Alireza Aghajamali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior performance of the machine-learning GAP force field for fullerene structures. Structural Chemistry, 2022, 33, 505-510.	1.0	5
2	Correlation between the energetic and thermal properties of C40 fullerene isomers: An accurate machine-learning force field study. Micro and Nano Engineering, 2022, 14, 100105.	1.4	5
3	Investigation of reflectance properties in a symmetric defective annular semiconductor–superconductor photonic crystal with a radial defect layer. Physica B: Condensed Matter, 2021, 605, 412770.	1.3	6
4	Molecular Dynamics Approach for Predicting Release Temperatures of Noble Gases in Presolar Nanodiamonds. Astrophysical Journal, 2021, 916, 85.	1.6	4
5	Can force fields developed for carbon nanomaterials describe the isomerization energies of fullerenes?. Chemical Physics Letters, 2021, 779, 138853.	1.2	11
6	Comparative Study of Carbon Force Fields for the Simulation of Carbon Onions. Australian Journal of Chemistry, 2021, 74, 709-714.	0.5	7
7	Acoustic wave frequency filtering in constant total length phononic crystals of Al/Pb multilayer. International Journal of Modern Physics B, 2021, 35, .	1.0	0
8	Evidence for Glass Behavior in Amorphous Carbon. Journal of Carbon Research, 2020, 6, 50.	1.4	5
9	Dodecanacci superconductor-metamaterial photonic quasicrystal. Optik, 2020, 222, 165290.	1.4	14
10	Epitaxial Formation of SiC on (100) Diamond. ACS Applied Electronic Materials, 2020, 2, 2003-2009.	2.0	5
11	Plastic Deformation of Singleâ€Crystal Diamond Nanopillars. Advanced Materials, 2020, 32, e1906458.	11.1	34
12	Band gap engineering in constant total length nonmagnetized plasma-dielectric multilayers. Optik, 2020, 207, 164476.	1.4	5
13	Extrinsic magnetized plasma Fabry–Perot resonator. Indian Journal of Physics, 2019, 93, 401-406.	0.9	15
14	Near- and mid-infrared bandgaps in a 1D photonic crystal containing superconductor and semiconductor-metamaterial. International Journal of Modern Physics B, 2019, 33, 1950219.	1.0	11
15	Transferability in interatomic potentials for carbon. Carbon, 2019, 155, 624-634.	5.4	55
16	Modification of nanodiamonds by xenon implantation: A molecular dynamics study. Nuclear Instruments & Methods in Physics Research B, 2019, 453, 32-40.	0.6	8
17	Robust Photonic Bandgaps in Quasiperiodic and Random Extrinsic Magnetized Plasma. IEEE Transactions on Plasma Science, 2019, 47, 1726-1733.	0.6	23
18	Periodic multilayer magnetized cold plasma containing a doped semiconductor. Indian Journal of Physics, 2018, 92, 911-917.	0.9	15

#	Article	IF	CITATIONS
19	Unphysical nucleation of diamond in the extended cutoff Tersoff potential. Molecular Simulation, 2018, 44, 164-171.	0.9	8
20	Double-negative multilayer containing an extrinsic random layer thickness magnetized cold plasma photonic quantum-well defect. Superlattices and Microstructures, 2017, 111, 248-254.	1.4	26
21	Effect of standard deviation, strength of magnetic field and electron density on the photonic band gap of an extrinsic disorder plasma photonic structure. Optical Materials, 2017, 72, 25-30.	1.7	23
22	Tunable photonic band gaps in an extrinsic Octonacci magnetized cold plasma quasicrystal. Physica B: Condensed Matter, 2017, 525, 41-45.	1.3	36
23	Analysis of Reflectance Properties in 1D Photonic Crystal Containing Metamaterial and High-Temperature Superconductor. Journal of Superconductivity and Novel Magnetism, 2017, 30, 343-351.	0.8	16
24	Near-infrared tunable narrow filter in a periodic multi-nanolayer doped by a superconductor photonic quantum-well. Applied Optics, 2016, 55, 9797.	2.1	10
25	Transmittance properties in a magnetized cold plasma–superconductor periodic multilayer. Applied Optics, 2016, 55, 6336.	2.1	42
26	Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal. Physica C: Superconductivity and Its Applications, 2016, 528, 5-8.	0.6	45
27	Investigation of Reflectance Properties in 1D Ternary Annular Photonic Crystal Containing Semiconductor and High-T c Superconductor. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1423-1431.	0.8	28
28	Study of optical reflectance properties in 1D annular photonic crystal containing double negative (DNG) metamaterials. Physica B: Condensed Matter, 2016, 489, 67-72.	1.3	28
29	Single-negative metamaterial periodic multilayer doped by magnetized cold plasma. Applied Optics, 2016, 55, 2086.	2.1	18
30	Near-infrared tunable narrow filter properties in a 1D photonic crystal containing semiconductor metamaterial photonic quantum-well defect. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 20-25.	1.3	27
31	Analysis of defect mode in a one-dimensional symmetric double-negative photonic crystal containing magnetized cold plasma defect. Applied Optics, 2015, 54, 8602.	2.1	36
32	Loss factor dependence of defect mode in a 1D defective lossy photonic crystal containing DNG materials. Optik, 2015, 126, 3158-3163.	1.4	7
33	Properties of the Band Gaps in 1D Ternary Lossy Photonic Crystal Containing Double-Negative Materials. Advances in Optical Technologies, 2014, 2014, 1-7.	0.8	8
34	Defect modes properties in periodic lossy multilayer containing negative index materials with symmetric and asymmetric geometric structures. Optik, 2014, 125, 839-843.	1.4	26
35	Effects of loss factors on zero permeability and zero permittivity gaps in 1D photonic crystal containing DNG materials. Physica B: Condensed Matter, 2014, 454, 170-174.	1.3	16
36	Properties of Defect Modes in Periodic Lossy Multilayer with Negative-Index-Materials. Communications in Theoretical Physics, 2013, 60, 80-86.	1.1	15

#	Article	IF	CITATIONS
37	Properties of the defect modes in 1D lossy photonic crystals containing two types of negative-index-material defects. Journal of Electromagnetic Waves and Applications, 2013, 27, 2317-2329.	1.0	13
38	Effects of normal and oblique incidence on zero- gap in periodic lossy multilayer containing double-negative materials. Physica B: Condensed Matter, 2012, 407, 1287-1291.	1.3	32