Abhishek Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/76274/publications.pdf

Version: 2024-02-01

		840776	888059
19	347	11	17
papers	citations	h-index	g-index
19	19	19	633
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorganic Chemistry, 2020, 59, 6648-6678.	4.0	80
2	Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect. Theranostics, 2020, 10, 567-584.	10.0	63
3	Photochemical tissue bonding with chitosan adhesive films. BioMedical Engineering OnLine, 2010, 9, 47.	2.7	46
4	Nanoassemblies of Gd–DTPA–monooleyl and glycerol monooleate amphiphiles as potential MRI contrast agents. Journal of Materials Chemistry B, 2014, 2, 1225.	5.8	25
5	Porous Upconversion Nanostructures as Bimodal Biomedical Imaging Contrast Agents. Journal of Physical Chemistry C, 2020, 124, 12168-12174.	3.1	18
6	Evaluation of Gd-DTPA-Monophytanyl and Phytantriol Nanoassemblies as Potential MRI Contrast Agents. Langmuir, 2015, 31, 1556-1563.	3.5	16
7	Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nuclear Medicine and Biology, 2020, 84-85, 63-72.	0.6	16
8	NMR imaging and diffusion. Adsorption, 2021, 27, 503-533.	3.0	14
9	Is It Time to Forgo the Use of the Terms "Spin–Lattice―and "Spin–Spin―Relaxation in NMR and MRI Journal of Physical Chemistry Letters, 2021, 12, 6305-6312.	? 4.6	13
10	Gdâ€DTPAâ€Dopamineâ€Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents. Chemistry - A European Journal, 2015, 21, 13950-13960.	3.3	12
11	Dipolar relaxation revisited: A complete derivation for the two spin case. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2015, 44, 74-113.	0.5	12
12	A complete derivation of the Käger equations for analyzing NMR diffusion measurements of exchanging systems. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2018, 47A, .	0.5	12
13	Thiolâ€water proton exchange of glutathione, cysteine, and N â€acetylcysteine: Implications for CEST MRI. NMR in Biomedicine, 2020, 33, e4188.	2.8	8
14	Shortening NMR experimental times. Magnetic Resonance in Chemistry, 2018, 56, 847-851.	1.9	5
15	Towards advanced paramagnetic nanoassemblies of highly ordered interior nanostructures as potential MRI contrast agents. New Journal of Chemistry, 2017, 41, 2735-2744.	2.8	4
16	Fast determination of the $\langle \sup 1 \langle \sup H $ relaxivities of MRI contrast agents. Magnetic Resonance in Chemistry, 2016, 54, 58-61.	1.9	2
17	NMR diffusion and relaxation studies of 2-nitroimidazole and albumin interactions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 318-323.	3.9	1
18	Frontispiece: Gdâ€DTPAâ€Dopamineâ€Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents. Chemistry - A European Journal, 2015, 21, .	3.3	0

ABHISHEK GUPTA

#	Article	IF	CITATIONS
19	Highly Ordered Supramolecular Nanoassemblies of Paramagnetic Amphiphilic Chelates as Potential MRI Contrast Agents. Australian Journal of Chemistry, 2018, 71, 195.	0.9	0