
Da-Ke Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 2017, 5, 2355-2364.	10.3	413
2	Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology, 2018, 34, 1713-1718.	10.7	326
3	Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 2013, 77, 385-390.	6.6	284
4	Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration and Biodegradation, 2019, 137, 42-58.	3.9	279
5	Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. International Biodeterioration and Biodegradation, 2014, 91, 74-81.	3.9	273
6	Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, 101, 14-21.	4.6	267
7	Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. Journal of Materials Science and Technology, 2019, 35, 631-636.	10.7	255
8	Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 2016, 110, 52-58.	4.6	231
9	Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corrosion Science, 2018, 130, 1-11.	6.6	230
10	Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 2017, 127, 1-9.	6.6	169
11	Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 118, 38-46.	4.6	162
12	Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 113, 1-8.	4.6	138
13	Stainless steel corrosion via direct iron-to-microbe electron transfer by <i>Geobacter</i> species. ISME Journal, 2021, 15, 3084-3093.	9.8	113
14	Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy. Corrosion Science, 2018, 144, 288-300.	6.6	112
15	Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. Corrosion Science, 2016, 111, 811-821.	6.6	110
16	Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 127, 1-9.	3.9	108
17	A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. Journal of Materials Science and Technology, 2020, 46, 201-210.	10.7	108
18	Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Materials Science and Engineering C, 2017, 71, 1079-1085.	7.3	107

#	Article	IF	CITATIONS
19	Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. Journal of Materials Science and Technology, 2018, 34, 1781-1790.	10.7	102
20	Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria. Corrosion Science, 2018, 132, 46-55.	6.6	102
21	Antimicrobial materials with medical applications. Materials Technology, 2015, 30, B90-B95.	3.0	101
22	Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corrosion Science, 2015, 101, 84-93.	6.6	93
23	Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. Journal of Materials Science and Technology, 2018, 34, 1325-1336.	10.7	90
24	Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine <i>Pseudomonas aeruginosa</i> biofilm. Biofouling, 2015, 31, 481-492.	2.2	89
25	Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 2018, 94, 9-13.	4.7	89
26	Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 243-252.	5.6	85
27	Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. Journal of Materials Science and Technology, 2017, 33, 1596-1603.	10.7	85
28	Advances in the treatment of problematic industrial biofilms. World Journal of Microbiology and Biotechnology, 2017, 33, 97.	3.6	83
29	Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Materials Science and Engineering C, 2015, 48, 228-234.	7.3	81
30	Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports, 2016, 6, 20190.	3.3	80
31	Nature Sunflower Stalk Pith with Zwitterionic Hydrogel Coating for Highly Efficient and Sustainable Solar Evaporation. Advanced Functional Materials, 2022, 32, 2108135.	14.9	79
32	Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corrosion Science, 2019, 153, 127-137.	6.6	78
33	Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Frontiers in Microbiology, 2017, 8, 2335.	3.5	74
34	Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater. International Biodeterioration and Biodegradation, 2016, 110, 199-205.	3.9	70
35	Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by d-amino acids. International Biodeterioration and Biodegradation, 2017, 117, 97-104.	3.9	68
36	Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa. Journal of Materials Science and Technology, 2019, 35, 216-222.	10.7	68

#	Article	IF	CITATIONS
37	Laboratory investigation of microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Corrosion Science, 2018, 145, 151-161.	6.6	67
38	Mussel-inspired superhydrophobic surfaces with enhanced corrosion resistance and dual-action antibacterial properties. Materials Science and Engineering C, 2017, 80, 566-577.	7.3	66
39	Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa. Corrosion Science, 2020, 164, 108355.	6.6	65
40	Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corrosion Science, 2016, 113, 46-56.	6.6	64
41	Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Research, 2022, 219, 118553.	11.3	63
42	Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel. Applied Surface Science, 2016, 386, 371-380.	6.1	62
43	Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018, 123, 34-44.	4.6	62
44	Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel. Electrochimica Acta, 2019, 316, 93-104.	5.2	62
45	Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids. Frontiers in Microbiology, 2016, 7, 896.	3.5	61
46	A synergistic d-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World Journal of Microbiology and Biotechnology, 2012, 28, 3067-3074.	3.6	60
47	Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2019, 128, 193-203.	4.6	60
48	Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract. International Biodeterioration and Biodegradation, 2018, 133, 159-169.	3.9	58
49	Microbial corrosion of metals: The corrosion microbiome. Advances in Microbial Physiology, 2021, 78, 317-390.	2.4	58
50	Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris. PLoS ONE, 2015, 10, e0136183.	2.5	57
51	Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Corrosion Science, 2017, 126, 142-151.	6.6	56
52	Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. Corrosion Science, 2018, 143, 281-291.	6.6	55
53	Antibacterial Performance of a Cu-bearing Stainless Steel against Microorganisms in Tap Water. Journal of Materials Science and Technology, 2015, 31, 243-251.	10.7	54
54	Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry, 2018, 121, 18-26.	4.6	53

#	Article	IF	CITATIONS
55	Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 132, 132-138.	3.9	52
56	Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Materials Science and Engineering C, 2016, 69, 744-750.	7.3	51
57	Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm. Journal of Materials Science and Technology, 2017, 33, 723-727.	10.7	50
58	Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corrosion Science, 2018, 145, 47-54.	6.6	48
59	Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae. Journal of Materials Science and Technology, 2020, 37, 200-206.	10.7	48
60	Marine Biofilms with Significant Corrosion Inhibition Performance by Secreting Extracellular Polymeric Substances. ACS Applied Materials & Interfaces, 2021, 13, 47272-47282.	8.0	47
61	Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials, 2021, 2, .	6.9	46
62	Microbial corrosion resistance of a novel Cu-bearing pipeline steel. Journal of Materials Science and Technology, 2018, 34, 2480-2491.	10.7	45
63	Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy. Journal of Materials Science and Technology, 2021, 71, 177-185.	10.7	45
64	Extracellular electron transfer in microbial biocorrosion. Current Opinion in Electrochemistry, 2021, 29, 100763.	4.8	45
65	Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa. Water Research, 2022, 220, 118634.	11.3	45
66	Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking. Engineering Failure Analysis, 2013, 28, 149-159.	4.0	44
67	Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test. Corrosion Science, 2018, 145, 307-319.	6.6	43
68	<scp>D</scp> â€Methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of <i>Desulfovibrio vulgaris</i> biofilm and biocorrosion pitting. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 837-845.	1.5	42
69	Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying. Journal of Materials Science and Technology, 2022, 102, 159-165.	10.7	41
70	An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Scientific Reports, 2016, 6, 29244.	3.3	40
71	Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy. Journal of Materials Science and Technology, 2021, 79, 101-108.	10.7	40
72	Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. Corrosion Science, 2019, 157, 98-108.	6.6	39

#	Article	IF	CITATIONS
73	Pourbaix diagram for HP-13Cr stainless steel in the aggressive oilfield environment characterized by high temperature, high CO2 partial pressure and high salinity. Electrochimica Acta, 2019, 293, 116-127.	5.2	38
74	Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Scientific Reports, 2017, 7, 6946.	3.3	35
75	Review on the corrosion-promotion activity of graphene and its inhibition. Journal of Materials Science and Technology, 2021, 91, 278-306.	10.7	35
76	Relationship between Microstructure and Corrosion Behavior of Martensitic High Nitrogen Stainless Steel 30Cr15Mo1N at Different Austenitizing Temperatures. Materials, 2017, 10, 861.	2.9	34
77	Improved corrosion resistance and biofilm inhibition ability of copper-bearing 304 stainless steel against oral microaerobic Streptococcus mutans. Journal of Materials Science and Technology, 2021, 66, 112-120.	10.7	33
78	Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. Journal of Materials Science and Technology, 2022, 117, 158-166.	10.7	33
79	Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. Journal of Materials Science and Technology, 2019, 35, 2494-2502.	10.7	31
80	Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing. Journal of Materials Science and Technology, 2020, 48, 72-83.	10.7	31
81	Antibacterial property of a gradient Cu-bearing titanium alloy by laser additive manufacturing. Rare Metals, 2022, 41, 580-593.	7.1	31
82	Biocorrosion caused by microbial biofilms is ubiquitous around us. Microbial Biotechnology, 2021, 14, 803-805.	4.2	30
83	d-Cysteine functionalised silver nanoparticles surface with a "disperse-then-kill―antibacterial synergy. Chemical Engineering Journal, 2020, 381, 122662.	12.7	29
84	Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria. Corrosion Science, 2021, 179, 109141.	6.6	28
85	Responses of soil microbiome to steel corrosion. Npj Biofilms and Microbiomes, 2021, 7, 6.	6.4	28
86	d-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. World Journal of Microbiology and Biotechnology, 2012, 28, 1641-1646.	3.6	27
87	Accelerated Corrosion of 316L Stainless Steel Caused by <i>Shewanella algae</i> Biofilms. ACS Applied Bio Materials, 2020, 3, 2185-2192.	4.6	27
88	Inhibiting corrosion of aluminum alloy 5083 through Vibrio species biofilm. Corrosion Science, 2021, 180, 109188.	6.6	27
89	Bioenergetics and extracellular electron transfer in microbial fuel cells and microbial corrosion. Current Opinion in Electrochemistry, 2022, 31, 100830.	4.8	26
90	Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. Corrosion, 2012, 68, 994-1002.	1.1	25

#	Article	IF	CITATIONS
91	Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Bioelectrochemistry, 2020, 133, 107477.	4.6	25
92	Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1. Journal of Materials Science and Technology, 2021, 64, 176-186.	10.7	25
93	Conductive magnetite nanoparticles considerably accelerated carbon steel corrosion by electroactive Desulfovibrio vulgaris biofilm. Corrosion Science, 2022, 205, 110440.	6.6	25
94	Bacterial biofilms as platforms engineered for diverse applications. Biotechnology Advances, 2022, 57, 107932.	11.7	23
95	Polyethyleneimine Functionalized Mesoporous Magnetic Nanoparticles with Enhanced Antibacterial and Antibiofilm Activity in an Alternating Magnetic Field. ACS Applied Materials & Interfaces, 2022, 14, 18794-18805.	8.0	23
96	Experimental testing and numerical simulation to analyze the corrosion failures of single well pipelines in Tahe oilfield. Engineering Failure Analysis, 2017, 80, 112-122.	4.0	22
97	Cu-bearing high-entropy alloys with excellent antiviral properties. Journal of Materials Science and Technology, 2021, 84, 59-64.	10.7	22
98	A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria. World Journal of Microbiology and Biotechnology, 2012, 28, 431-435.	3.6	21
99	Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environmental Technology (United Kingdom), 2013, 34, 1915-1928.	2.2	21
100	Understanding biofilm impact on electrochemical impedance spectroscopy analyses in microbial corrosion inhibition phenomena. Electrochimica Acta, 2022, 426, 140803.	5.2	20
101	Investigation on mechanical, corrosion resistance and antibacterial properties of Cu-bearing 2205 duplex stainless steel by solution treatment. RSC Advances, 2016, 6, 112738-112747.	3.6	19
102	A Synergistic Acceleration of Corrosion of Q235 Carbon Steel Between Magnetization and Extracellular Polymeric Substances. Acta Metallurgica Sinica (English Letters), 2018, 31, 456-464.	2.9	19
103	Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels. Journal of Materials Science and Technology, 2019, 35, 2357-2364.	10.7	19
104	Stern–Geary Constant for X80 Pipeline Steel in the Presence of Different Corrosive Microorganisms. Acta Metallurgica Sinica (English Letters), 2019, 32, 1483-1489.	2.9	19
105	Effect of organic silicon quaternary ammonium salts on mitigating corrosion of reinforced steel induced by SRB in mild alkaline simulated concrete pore solution. Journal of Materials Science and Technology, 2021, 64, 126-140.	10.7	18
106	Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition. Materials Characterization, 2021, 179, 111302.	4.4	18
107	Effect of Iron Oxidizing Bacteria Biofilm on Corrosion Inhibition of Imidazoline Derivative in CO ₂ -Containing Oilfield Produced Water with Organic Carbon Source Starvation. Journal of the Electrochemical Society, 2018, 165, C354-C361.	2.9	17
108	Investigation of the failure mechanism of the TG-201 inhibitor: Promoting the synergistic effect of HP-13Cr stainless steel during the well completion. Corrosion Science, 2020, 166, 108448.	6.6	17

#	Article	IF	CITATIONS
109	Antibacterial activities of a novel Cu-bearing high-entropy alloy against multi-drug-resistant Acinetobacter baumannii and Staphylococcus aureus. Rare Metals, 2022, 41, 570-579.	7.1	17
110	Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion. Corrosion Science, 2022, 204, 110390.	6.6	17
111	Corrosion Inhibition of X80 Steel in Simulated Marine Environment with Marinobacter aquaeolei. Acta Metallurgica Sinica (English Letters), 2019, 32, 1373-1384.	2.9	16
112	Mitigation of sulphate-reducing bacteria attack on the corrosion of 20SiMn steel rebar in sulphoaluminate concrete using organic silicon quaternary ammonium salt. Construction and Building Materials, 2020, 257, 119047.	7.2	16
113	Streptococcus mutans biofilms induce metabolite-mediated corrosion of 316 L stainless steel in a simulated oral environment. Corrosion Science, 2021, 182, 109286.	6.6	16
114	Marine Vibrio spp. protect carbon steel against corrosion through secreting extracellular polymeric substances. Npj Materials Degradation, 2022, 6, .	5.8	15
115	The role of surface morphology in the barrier properties of epoxy coatings in different corrosion environments. Progress in Organic Coatings, 2017, 104, 199-209.	3.9	14
116	Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg–Li–Ca alloy. Bioactive Materials, 2020, 5, 902-916.	15.6	12
117	An antibacterial mechanism of titanium alloy based on micro-area potential difference induced reactive oxygen species. Journal of Materials Science and Technology, 2022, 119, 75-86.	10.7	12
118	Oral microbiota accelerates corrosion of 316L stainless steel for orthodontic applications. Journal of Materials Science and Technology, 2022, 128, 118-132.	10.7	12
119	Isolation and identification of a novel endophytic bacterial strain with antifungal activity from wild blueberryVaccinium uliginosum. Annals of Microbiology, 2007, 57, 673-676.	2.6	11
120	Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans. Bioelectrochemistry, 2021, 142, 107940.	4.6	10
121	Mitigation of the corrosion-causing <i>Desulfovibrio desulfuricans</i> biofilm using an organic silicon quaternary ammonium salt in alkaline media simulated concrete pore solutions. Biofouling, 2018, 34, 1121-1137.	2.2	9
122	Interspecies interactions of Vibrio azureus and Jeotgalibacillus alkaliphilus on corrosion of duplex stainless steel. International Biodeterioration and Biodegradation, 2021, 160, 105212.	3.9	9
123	A New High-Efficiency Experimental Design for Optimizing Various Flow Velocities Testing in Extremely Aggressive Formation Water. Acta Metallurgica Sinica (English Letters), 2019, 32, 944-950.	2.9	7
124	Microbiologically influenced corrosion behavior of friction stir welded S32654 super austenitic stainless steel in the presence of Acidithiobacillus caldus SM-1 biofilm. Materials Today Communications, 2020, 25, 101491.	1.9	5
125	A Mixture of D-Amino Acids Enhances the Biocidal Efficacy of CMIT/MIT Against Corrosive Vibrio harveyi Biofilm. Frontiers in Microbiology, 2020, 11, 557435.	3.5	5
126	Effect of the Flow Velocity on the Corrosion Behavior of UNS S41426 Stainless Steel in the Extremely Aggressive Oilfield Environment for the Tarim Area. Corrosion, 2020, 76, 654-665.	1.1	5

#	Article	IF	CITATIONS
127	Engineering microbial systems for the production and functionalization of biomaterials. Current Opinion in Microbiology, 2022, 68, 102154.	5.1	5
128	Mitigation of carbon steel biocorrosion using a green biocide enhanced by a nature-mimicking anti-biofilm peptide in a flow loop. Bioresources and Bioprocessing, 2022, 9, .	4.2	5
129	Anti-bacterial performance evaluation of hydrophobic poly (dimethylsiloxane)-ZnO coating using Pseudomonas aeruginosa. Chemical Papers, 2021, 75, 1069-1081.	2.2	4
130	Editorial: Bioleaching and Biocorrosion: Advances in Interfacial Processes. Frontiers in Microbiology, 2021, 12, 653029.	3.5	4
131	Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World Journal of Microbiology and Biotechnology, 2016, 32, 23.	3.6	3
132	Potential application of an Aspergillus strain in a pilot biofilter for benzene biodegradation. Scientific Reports, 2017, 7, 46059.	3.3	3
133	d-leucine enhances antibiofilm activity of chlorhexidine against caries-causing Streptococcus mutans biofilm. International Biodeterioration and Biodegradation, 2021, 157, 105135.	3.9	3
134	Inhibitory Effect of Vibrio neocaledinocus sp. and Pseudoalteromonas piscicida Dual-Species Biofilms on the Corrosion of Carbon Steel. Acta Metallurgica Sinica (English Letters), 0, , 1.	2.9	2
135	Study on antibacterial performance and biocompatibility of a novel phosphorus-magnesium fiber. Materials Letters, 2017, 209, 562-565.	2.6	1