
Ruijuan Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	39.5	572
2	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365.	12.8	515
3	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	12.8	426
4	Atomic Structure of Li ₂ MnO ₃ after Partial Delithiation and Reâ€Lithiation. Advanced Energy Materials, 2013, 3, 1358-1367.	19.5	211
5	Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.	13.7	163
6	Correlated Migration Invokes Higher Na ⁺ â€Ion Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	19.5	162
7	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	13.7	142
8	Interfacial engineering to achieve an energy density of over 200 Wh kgâ^1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	39.5	130
9	High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports, 2015, 5, 14227.	3.3	117
10	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	17.4	91
11	Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li ₃ PS ₄ electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 21269-21277.	2.8	66
12	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	12.8	60
13	Mn Ion Dissolution Mechanism for Lithium-Ion Battery with LiMn ₂ O ₄ Cathode: <i>In Situ</i> Ultraviolet–Visible Spectroscopy and <i>Ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry Letters, 2020, 11, 3051-3057.	4.6	60
14	Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. Physical Review Letters, 2017, 118, 195901.	7.8	58
15	Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. Journal of Materiomics, 2015, 1, 325-332.	5.7	50
16	Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study. Applied Physics Letters, 2011, 99, .	3.3	49
17	Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1526-1536.	5.1	36
18	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	19.5	32

Ruijuan Xiao

#	Article	IF	CITATIONS
19	Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. Advanced Energy Materials, 2018, 8, 1703092.	19.5	30
20	Design and preparation of nanoporous Ag–Cu alloys by dealloying Mg–(Ag,Cu)–Y metallic glasses for antibacterial applications. Journal of Materials Chemistry B, 2019, 7, 4169-4176.	5.8	30
21	High-throughput computational discovery of K ₂ CdO ₂ as an ion conductor for solid-state potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5157-5162.	10.3	23
22	The Role of Electron Localization in Covalency and Electrochemical Properties of Lithiumâ€ion Battery Cathode Materials. Advanced Functional Materials, 2021, 31, 2001633.	14.9	21
23	Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, .		21
24	Structural stability and stabilization of Li ₂ MoO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 17538-17543.	2.8	20
25	First-Principles Simulations for the Surface Evolution and Mn Dissolution in the Fully Delithiated Spinel LiMn ₂ 0 ₄ . Langmuir, 2021, 37, 5252-5259.	3.5	17
26	Reaction Mechanisms of Ta-Substituted Cubic Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS Applied Materials & Interfaces, 2021, 13, 38384-38393.	8.0	14
27	Screening LiMn ₂ O ₄ Surface Modification Schemes under Theoretical Guidance. ACS Applied Materials & Interfaces, 2022, 14, 10353-10362.	8.0	14
28	New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. Journal of Materials Chemistry A, 2022, 10, 3093-3101.	10.3	11
29	Ionic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. Inorganics, 2022, 10, 45.	2.7	2
30	Accelerated strategy for fast ion conductor materials screening and optimal doping scheme exploration. Journal of Materiomics, 2022, 8, 1038-1047.	5.7	1