Michael F Herman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7626935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 1984, 91, 27-34.	0.9	687
2	Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator. Journal of Chemical Physics, 1986, 84, 326-334.	1.2	271
3	Analysis and Evaluation of Ionization Potentials, Electron Affinities, and Excitation Energies by the Equations of Motion-Green's Function Method. Advances in Chemical Physics, 2007, , 1-69.	0.3	185
4	Nonadiabatic semiclassical scattering. I. Analysis of generalized surface hopping procedures. Journal of Chemical Physics, 1984, 81, 754-763.	1.2	172
5	Generalization of the geometric optical series approach for nonadiabatic scattering problems. Journal of Chemical Physics, 1982, 76, 2949-2958.	1.2	89
6	Time reversal and unitarity in the frozen Gaussian approximation for semiclassical scattering. Journal of Chemical Physics, 1986, 85, 2069-2076.	1.2	76
7	A semiclassical surface hopping propagator for nonadiabatic problems. Journal of Chemical Physics, 1995, 103, 8081-8097.	1.2	72
8	Monte Carlo simulation of solvent effects on vibrational and electronic spectra. Journal of Chemical Physics, 1983, 78, 4103-4117.	1.2	69
9	Nonadiabatic semiclassical scattering. II. Solution of twoâ€dimensional models and comparison with quantum results. Journal of Chemical Physics, 1984, 81, 764-774.	1.2	42
10	Nonadiabatic semiclassical scattering. III. Time dependent surface hopping formalism. Journal of Chemical Physics, 1985, 82, 3666-3673.	1.2	34
11	Solvent induced vibrational relaxation in diatomics. I. Derivation of a local relaxation rate. Journal of Chemical Physics, 1987, 87, 4779-4793.	1.2	32
12	Optimal representation for semiclassical surface hopping methods. Journal of Chemical Physics, 1999, 110, 4141-4151.	1.2	30
13	Semiclassical surfaceâ€hopping approximations for the calculation of solventâ€induced vibrationalâ€relaxation rate constants. Journal of Chemical Physics, 1994, 101, 7520-7527.	1.2	26
14	Semiclassical Surface Hopping Hâ^'K Propagator: Application to Two-Dimensional, Two-Surface Problemsâ€. Journal of Physical Chemistry B, 2001, 105, 6562-6569.	1.2	25
15	Choosing a good representation of the quantum state wave functions for semiclassical surface hopping calculations. Journal of Chemical Physics, 1999, 111, 10427-10435.	1.2	23
16	Solvent induced vibrational population relaxation in diatomics. II. Simulation for Br2in Ar. Journal of Chemical Physics, 1987, 87, 4794-4801.	1.2	22
17	A nonreptation model for polymer dynamics in the melt and concentrated solutions. Journal of Chemical Physics, 1990, 92, 2043-2054.	1.2	20
18	Numerical study of the accuracy and efficiency of various approaches for Monte Carlo surface hopping calculations. Journal of Chemical Physics, 2005, 122, 094104.	1.2	20

Michael F Herman

#	Article	IF	CITATIONS
19	Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility. Journal of Chemical Physics, 2015, 143, 134106.	1.2	20
20	Numerical comparison of generalized surface hopping, classical analog, and self onsistent eikonal approximations for nonadiabatic scattering. Journal of Chemical Physics, 1985, 82, 4509-4516.	1.2	19
21	A new uniform semiclassical wave function for single surface and multisurface scattering. Journal of Chemical Physics, 1983, 79, 2771-2778.	1.2	17
22	Toward an Accurate and Efficient Semiclassical Surface Hopping Procedure for Nonadiabatic Problems. Journal of Physical Chemistry A, 2005, 109, 9196-9205.	1.1	17
23	The role of correlated many chain motions in linear chain polymer melts. Journal of Chemical Physics, 1995, 103, 4324-4332.	1.2	16
24	A quantitative theory of linear chain polymer dynamics in the melt. I. General scaling behavior. Journal of Chemical Physics, 1996, 105, 1153-1161.	1.2	14
25	Realâ€ŧime pathâ€integral simulation of vibrational transition probabilities of small molecules in clusters: Theory and application to Br2in Ar. Journal of Chemical Physics, 1992, 96, 5999-6009.	1.2	13
26	Phase corrected higher-order expression for surface hopping transition amplitudes in nonadiabatic scattering problems. Journal of Chemical Physics, 2003, 119, 11048-11057.	1.2	13
27	An analysis through order â"2 of a surface hopping expansion of the nonadiabatic wave function. Journal of Chemical Physics, 2008, 128, 114105.	1.2	13
28	Enzymatic polymerizations using surfactant microstructures and the preparation of polymer-ferrite composites. Applied Biochemistry and Biotechnology, 1995, 51-52, 241-252.	1.4	12
29	Globally uniform semiclassical surface-hopping wave function for nonadiabatic scattering. Journal of Chemical Physics, 2004, 120, 7383-7390.	1.2	12
30	Analysis of the statistical errors in conditioned real time path integral methods. Journal of Chemical Physics, 1993, 99, 5087-5090.	1.2	10
31	A quantitative theory of linear chain polymer dynamics in the melt. II. Comparison with simulation data. Journal of Chemical Physics, 1996, 105, 1162-1174.	1.2	9
32	The development of semiclassical dynamical methods and their application to vibrational relaxation in condensed-phase systems. International Journal of Quantum Chemistry, 1998, 70, 897-907.	1.0	9
33	Comparison of theoretical methods for resonant vibration–vibration energy transfer in liquids. Journal of Chemical Physics, 1998, 108, 2903-2911.	1.2	8
34	Viscoelastic response of bidisperse melts in the lateral motion model. Journal of Chemical Physics, 1995, 102, 7700-7707.	1.2	7
35	Determining nuclear hyperfine populations in the ground electronic state of atomic hydrogen produced by the 193 nm photolysis of HBr. Journal of Chemical Physics, 1995, 103, 5864-5867.	1.2	6
36	A quantitative theory of linear chain polymer dynamics in the melt. IV. Comparison with experimental diffusion constant data. Journal of Chemical Physics, 1998, 108, 5122-5129.	1.2	6

MICHAEL F HERMAN

#	Article	IF	CITATIONS
37	Improved treatment of the lateral-reptative mixing and approximate analytical expressions for the lateral motion model of polymer melts. Journal of Chemical Physics, 1999, 110, 8792-8801.	1.2	6
38	Recent nuclear magnetic resonance experiments on polymer melts: Comments. Journal of Chemical Physics, 2000, 112, 3040-3044.	1.2	6
39	An approximate discretized real time path integral simulation method for nearly classical systems. Journal of Chemical Physics, 1993, 98, 6975-6981.	1.2	5
40	Semiclassical Nonadiabatic Surface-hopping Wave Function Expansion at Low Energies: Hops in the Forbidden Region. Journal of Physical Chemistry B, 2008, 112, 15966-15972.	1.2	5
41	A quantitative theory of linear chain polymer dynamics in the melt. III. Dependence of quantities on bead location along the chain contour. Journal of Chemical Physics, 1996, 105, 2463-2470.	1.2	4
42	Model calculations of resonant vibration to vibration transition probabilities in clusters. Journal of Chemical Physics, 1998, 109, 4726-4733.	1.2	4
43	Using Force Field Simulations for the Evaluation of the Monomer Parameters for the Calculation of Diffusion Constants for Long Chain Polymer Melts. Macromolecules, 2000, 33, 3932-3939.	2.2	4
44	Improving the Efficiency of Monte Carlo Surface Hopping Calculations. Journal of Physical Chemistry B, 2014, 118, 8026-8033.	1.2	4
45	Analysis of a surface hopping expansion that includes hops in classically forbidden regions. Chemical Physics, 2014, 433, 12-21.	0.9	4
46	Analysis of the relative phases of contributions to the primitive semiclassicalSmatrix. Molecular Physics, 1985, 56, 525-539.	0.8	3
47	An Explanation for the Experimental Data on the Motion of Rings and Linear Chains in Melts and Microgels. Macromolecules, 1996, 29, 6349-6350.	2.2	3
48	A Length Scale Dependent Model for Stress Relaxation in Polymer Melts. Macromolecules, 2001, 34, 4580-4590.	2.2	3
49	The calculation of multidimensional semiclassical wave functions in the forbidden region using real valued coordinates. Journal of Chemical Physics, 2010, 133, 114108.	1.2	3
50	A justification for the use of approximate transition amplitudes in semiclassical surface hopping. Molecular Physics, 2011, 109, 1581-1592.	0.8	3
51	Using an r-dependent Gaussian width in calculations of the globally uniform semiclassical wave function. Journal of Chemical Physics, 2007, 126, 034104.	1.2	2
52	Nonadiabatic Scattering Problems in Liquid-State Vibrational Relaxation. Advances in Chemical Physics, 2007, , 577-602.	0.3	1
53	A singularity free surface hopping expansion for the multistate wave function. Journal of Chemical Physics, 2009, 131, 214108.	1.2	1
54	A NON-MARKOVIAN MODEL FOR PARTICLE MOTION IN FLUIDIZED BEDS. Chemical Engineering Communications, 1987, 56, 203-209.	1.5	0

#	Article	IF	CITATIONS
55	On the Importance of the Classically Forbidden Region in Calculations of the Relaxation Rate for High-Frequency Vibrations:  A Model Calculation. Journal of Physical Chemistry A, 2007, 111, 10186-10190.	1.1	0
56	Time dependent semiclassical tunneling through one dimensional barriers using only real valued trajectories. Journal of Chemical Physics, 2015, 143, 164110.	1.2	0