
Yael Kali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7626854/publications.pdf Version: 2024-02-01

VAEL KALL

#	Article	IF	CITATIONS
1	Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 1996, 33, 369-391.	2.0	149
2	Effect of knowledge integration activities on students' perception of the earth's crust as a cyclic system. Journal of Research in Science Teaching, 2003, 40, 545-565.	2.0	121
3	Collaborative knowledge building using the Design Principles Database. International Journal of Computer-Supported Collaborative Learning, 2006, 1, 187-201.	1.9	118
4	Teachers as designers of technology enhanced learning. Instructional Science, 2015, 43, 173-179.	1.1	99
5	Teacher design knowledge for technology enhanced learning: an ecological framework for investigating assets and needs. Instructional Science, 2015, 43, 181-202.	1.1	97
6	Relationship Between Earth-Science Education and Spatial Visualization. Journal of Geoscience Education, 1997, 45, 129-132.	0.8	94
7	Researching design practices and design cognition: contexts, experiences and pedagogical knowledgeâ€inâ€pieces. Learning, Media and Technology, 2011, 36, 129-149.	2.1	73
8	The role of design-principles in designing courses that promote collaborative learning in higher-education. Computers in Human Behavior, 2009, 25, 1067-1078.	5.1	51
9	Software for Assisting High-School Students in the Spatial Perception of Geological Structures. Journal of Geoscience Education, 1997, 45, 10-21.	0.8	36
10	Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning. CBE Life Sciences Education, 2012, 11, 402-412.	1.1	32
11	A fingerprint pattern of supports for teachers' designing of technology-enhanced learning. Instructional Science, 2015, 43, 283-307.	1.1	32
12	Designing Effective Visualizations for Elementary School Science. Elementary School Journal, 2008, 109, 181-198.	0.9	30
13	Learning design Rashomon I - supporting the design of one lesson through different approaches. Research in Learning Technology, 0, 21, .	2.3	26
14	Teaching expertise reconsidered: The Technology, Pedagogy, Content and Space (TPeCS) knowledge framework. British Journal of Educational Technology, 2019, 50, 2162-2177.	3.9	25
15	Boundary breaking for interdisciplinary learning. Research in Learning Technology, 2015, 23, 26496.	2.3	23
16	The Effect of an Earth-Science Learning Program on Students' Scientific Thinking Skills. Journal of Geoscience Education, 2005, 53, 387-393.	0.8	22
17	Teaching to design educational technologies. International Journal of Learning Technology, 2011, 6, 4.	0.2	22
18	Enhancing the Authenticity of a Web-Based Module for Teaching Simple Inheritance. Contemporary Trends and Issues in Science Education, 2011, , 11-38.	0.2	20

Yael Kali

#	Article	IF	CITATIONS
19	School principals' influence on science teachers' technology implementation: a retrospective analysis. International Journal of Leadership in Education, 2011, 14, 229-245.	1.4	19
20	Harnessing Technology for Promoting Undergraduate Art Education: A Novel Model that Streamlines Learning between Classroom, Museum, and Home. IEEE Transactions on Learning Technologies, 2015, 8, 5-17.	2.2	17
21	Supporting outdoor inquiry learning (SOIL): Teachers as designers of mobileâ€assisted seamless learning. British Journal of Educational Technology, 2018, 49, 1145-1161.	3.9	16
22	Assimilating Online Technologies into School Culture. Interdisciplinary Journal of E-Skills and Lifelong Learning, 0, 5, 307-334.	0.0	15
23	ASSESSING THE ASSESSORS: ADDED VALUE IN WEB-BASED MULTI-CYCLE PEER ASSESSMENT IN HIGHER EDUCATION. Research and Practice in Technology Enhanced Learning, 2008, 03, 3-32.	1.9	14
24	The Culture of Learning Continuum: promoting internal values in higher education. Studies in Higher Education, 2018, 43, 416-436.	2.9	14
25	The opportunities of networks of research-practice partnerships and why CSCL should not give up on large-scale educational change. International Journal of Computer-Supported Collaborative Learning, 2018, 13, 457-466.	1.9	14
26	A Virtual Journey within the Rock-Cycle: A Software Kit for the Development of Systems-Thinking in the Context of the Earth's Crust. Journal of Geoscience Education, 2003, 51, 165-170.	0.8	13
27	Citizen Science: An Opportunity for Learning in the Networked Society. , 2019, , 97-115.		13
28	Teaching and learning cultures in higher education: a mismatch in conceptions. Higher Education Research and Development, 2019, 38, 849-863.	1.9	10
29	CILT2000: Visualization and Modeling. Journal of Science Education and Technology, 2002, 11, 305-310.	2.4	8
30	Design-Centric Research-Practice Partnerships: Three Key Lenses for Building Productive Bridges Between Theory and Practice. , 2018, , 1-30.		8
31	Extending the applicability of design-based research through research-practice partnerships. Educational Design Research, 2017, 1, .	0.3	6
32	Technology-Enhanced Learning Communities on a Continuum Between Spontaneous and Designed Environments. , 2019, , 25-37.		5
33	Five Waves of Conceptualizing Knowledge and Learning for Our Future in a Networked Society. , 2019, , 1-21.		5
34	Concretization of Design Ideas in the Context of Educational Technology Design. , 2015, , 31-47.		3
35	Science Education and the Learning Sciences as Coevolving Species. , 0, , 565-586.		3
36	Teachers as Designers of Technology-Enhanced Outdoor Inquiry. Interdisciplinary Journal of E-Skills and Lifelong Learning, 0, 11, 209-235.	0.0	2

#	Article	IF	CITATIONS
37	Science Education and the Learning Sciences. , 2022, , 486-503.		1
38	Design Methods for TEL. , 2017, , 37-46.		0
39	Democracy, Communication, and Education in the Twenty-First Century. , 2019, , 117-136.		0