Nuri A Yazdani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762657/publications.pdf

Version: 2024-02-01

39 papers 1,488 citations

361045 20 h-index 37 g-index

40 all docs

40 docs citations

times ranked

40

2344 citing authors

#	Article	IF	CITATIONS
1	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	13.1	192
2	Towards designing robust coupled networks. Scientific Reports, 2013, 3, 1969.	1.6	162
3	Soft surfaces of nanomaterials enable strong phonon interactions. Nature, 2016, 531, 618-622.	13.7	133
4	Probing Solvent–Ligand Interactions in Colloidal Nanocrystals by the NMR Line Broadening. Chemistry of Materials, 2018, 30, 5485-5492.	3.2	117
5	A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nature Communications, 2015, 6, 6180.	5.8	113
6	Tuning Electron–Phonon Interactions in Nanocrystals through Surface Termination. Nano Letters, 2018, 18, 2233-2242.	4.5	68
7	Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nature Communications, 2022, 13, 2587.	5.8	66
8	Upscaling Colloidal Nanocrystal Hot-Injection Syntheses via Reactor Underpressure. Chemistry of Materials, 2017, 29, 796-803.	3.2	51
9	Charge transport in semiconductors assembled from nanocrystal quantum dots. Nature Communications, 2020, 11, 2852.	5.8	51
10	Bulk and Nanocrystalline Cesium Lead-Halide Perovskites as Seen by Halide Magnetic Resonance. ACS Central Science, 2020, 6, 1138-1149.	5.3	43
11	Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size. Journal of Physical Chemistry Letters, 2014, 5, 3522-3527.	2.1	41
12	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr ₃ Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. Nano Letters, 2020, 20, 1819-1829.	4.5	41
13	Metalâ€Dielectricâ€CNT Nanowires for Femtomolar Chemical Detection by Surface Enhanced Raman Spectroscopy. Advanced Materials, 2013, 25, 4431-4436.	11.1	31
14	Size, Ligand, and Defect-Dependent Electron–Phonon Coupling in Chalcogenide and Perovskite Nanocrystals and Its Impact on Luminescence Line Widths. ACS Photonics, 2020, 7, 1088-1095.	3.2	31
15	Machine Learning for Analysis of Time-Resolved Luminescence Data. ACS Photonics, 2018, 5, 4888-4895.	3.2	29
16	Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes. Beilstein Journal of Nanotechnology, 2014, 5, 234-244.	1.5	27
17	Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nature Communications, 2019, 10, 4236.	5.8	25
18	Facile diameter control of vertically aligned, narrow single-walled carbon nanotubes. RSC Advances, 2013, 3, 1434-1441.	1.7	22

#	Article	IF	Citations
19	Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1384-1392.	2.1	22
20	Measuring the Vibrational Density of States of Nanocrystal-Based Thin Films with Inelastic X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 1561-1567.	2.1	20
21	Nonequilibrium Thermodynamics of Colloidal Gold Nanocrystals Monitored by Ultrafast Electron Diffraction and Optical Scattering Microscopy. ACS Nano, 2020, 14, 4792-4804.	7.3	20
22	Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16243-16249.	4.0	19
23	Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nature Communications, 2021, 12, 1860.	5 . 8	19
24	Surface phonons of lithium ion battery active materials. Sustainable Energy and Fuels, 2019, 3, 508-513.	2.5	18
25	SWIMRT: A graphical user interface using the sliding window algorithm to construct a fluence map machine file. Journal of Applied Clinical Medical Physics, 2006, 7, 69-85.	0.8	17
26	In Situ Measurement and Control of the Fermi Level in Colloidal Nanocrystal Thin Films during Their Fabrication. Journal of Physical Chemistry Letters, 2018, 9, 7165-7172.	2.1	14
27	Dopants and Traps in Nanocrystal-Based Semiconductor Thin Films: Origins and Measurement of Electronic Midgap States. ACS Applied Electronic Materials, 2020, 2, 398-404.	2.0	13
28	In Situ Monitoring of Cation-Exchange Reaction Shell Growth on Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 24345-24351.	1.5	12
29	Simulating nanocrystal-based solar cells: A lead sulfide case study. Journal of Chemical Physics, 2019, 151, 241104.	1.2	12
30	Metasurface Colloidal Quantum Dot Photodetectors. ACS Photonics, 2022, 9, 482-492.	3.2	11
31	Enhanced Charge Transport Kinetics in Anisotropic, Stratified Photoanodes. ACS Applied Materials & amp; Interfaces, 2014, 6, 1389-1393.	4.0	10
32	Manipulating Electronic Structure from the Bottom-Up: Colloidal Nanocrystal-Based Semiconductors. Journal of Physical Chemistry Letters, 2020, 11, 9255-9264.	2.1	9
33	Recombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift–Diffusion Simulations. ACS Applied Electronic Materials, 2021, 3, 4977-4989.	2.0	8
34	Effect of Positional Disorders on Charge Transport in Nanocrystal Quantum Dot Thin Films. ACS Applied Electronic Materials, 2022, 4, 631-642.	2.0	8
35	Phonon-engineered solids constructed from nanocrystals. APL Materials, 2019, 7, 081124.	2.2	7
36	Enhanced ferromagnetism from electron-electron interactions in double-exchange-type models. Physical Review B, $2011,83,\ldots$	1.1	1

#	Article	IF	CITATIONS
37	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr3 Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. , 0, , .		O
38	Magnetic Resonance Spectroscopy of Bulk and Nanocrystalline Cesium Lead Halide Perovskites. , 0, , .		O
39	Measuring Electron-Phonon Coupling induced Lattice Reorganization in Lead Halide Perovskite Nanocrystals through Femto-Second Resolved Optical-pump Diffraction-probe experiments. , 0, , .		0