
Ivan Gladich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7626217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmospheric Chemistry and Physics, 2014, 14, 1587-1633.	1.9	235
2	A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nature Communications, 2017, 8, 700.	5.8	59
3	Self-Organization of 1-Methylnaphthalene on the Surface of Artificial Snow Grains: A Combined Experimental–Computational Approach. Journal of Physical Chemistry A, 2011, 115, 11412-11422.	1.1	43
4	Interfaces Select Specific Stereochemical Conformations: The Isomerization of Glyoxal at the Liquid Water Interface. Journal of the American Chemical Society, 2017, 139, 27-30.	6.6	38
5	Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. Journal of Chemical Physics, 2016, 144, 214701.	1.2	34
6	Halide Affinity for the Waterâ`'Air Interface in Aqueous Solutions of Mixtures of Sodium Salts. Journal of Physical Chemistry A, 2011, 115, 5895-5899.	1.1	30
7	Arrhenius analysis of anisotropic surface self-diffusion on the prismatic facet of ice. Physical Chemistry Chemical Physics, 2011, 13, 19960.	1.3	29
8	A surface-promoted redox reaction occurs spontaneously on solvating inorganic aerosol surfaces. Science, 2021, 374, 747-752.	6.0	28
9	Spectroscopic Properties of Benzene at the Air–Ice Interface: A Combined Experimental–Computational Approach. Journal of Physical Chemistry A, 2014, 118, 7535-7547.	1.1	27
10	Impact of atmospheric dust emission schemes on dust production and concentration over the Arabian Peninsula. Modeling Earth Systems and Environment, 2016, 2, 1.	1.9	26
11	Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. Journal of the American Chemical Society, 2020, 142, 5574-5582.	6.6	26
12	Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice Ih. Physical Chemistry Chemical Physics, 2012, 14, 11371.	1.3	25
13	Tuning the Stereoselectivity and Solvation Selectivity at Interfacial and Bulk Environments by Changing Solvent Polarity: Isomerization of Glyoxal in Different Solvent Environments. Journal of the American Chemical Society, 2018, 140, 5535-5543.	6.6	23
14	Surface Propensity of Aqueous Atmospheric Bromine at the Liquid–Gas Interface. Journal of Physical Chemistry Letters, 2020, 11, 3422-3429.	2.1	22
15	Adsorption, Mobility, and Self-Association of Naphthalene and 1-Methylnaphthalene at the Water–Vapor Interface. Journal of Physical Chemistry A, 2014, 118, 1052-1066.	1.1	21
16	Peptide biosensors for anticancer drugs: Design in silico to work in denaturizing environment. Biosensors and Bioelectronics, 2018, 100, 298-303.	5.3	20
17	The Iceâ^'Vapor Interface and the Melting Point of Ice <i>I</i> _{<i>h</i>} for the Polarizable POL3 Water Model. Journal of Physical Chemistry A, 2011, 115, 5973-5982.	1.1	19
18	Simulating global horizontal irradiance in the Arabian Peninsula: Sensitivity to explicit treatment of aerosols. Solar Energy, 2018, 163, 347-355.	2.9	18

Ivan Gladich

#	Article	IF	CITATIONS
19	Negative heat capacity of small systems in the microcanonical ensemble. Europhysics Letters, 2010, 90, 63001.	0.7	17
20	Designing High-Affinity Peptides for Organic Molecules by Explicit Solvent Molecular Dynamics. Journal of Physical Chemistry B, 2015, 119, 12963-12969.	1.2	17
21	Halide and sodium ion parameters for modeling aqueous solutions in TIP5P-Ew water. Chemical Physics Letters, 2010, 489, 113-117.	1.2	16
22	In Silico Design of Short Peptides as Sensing Elements for Phenolic Compounds. ACS Sensors, 2016, 1, 279-286.	4.0	14
23	<i>Ab Initio</i> Study of the Reaction of Ozone with Bromide Ion. Journal of Physical Chemistry A, 2015, 119, 4482-4488.	1.1	13
24	Stability of a Monoethanolamine-CO ₂ Zwitterion at the Vapor/Liquid Water Interface: Implications for Low Partial Pressure Carbon Capture Technologies. Journal of Physical Chemistry B, 2021, 125, 4890-4897.	1.2	13
25	On the diurnal cycle of deep moist convection in the southern side of the Alps analysed through cloud-to-ground lightning activity. Atmospheric Research, 2011, 100, 371-376.	1.8	12
26	Vertical Ozone Concentration Profiles in the Arabian Gulf Region during Summer and Winter: Sensitivity of WRF-Chem to Planetary Boundary Layer Schemes. Aerosol and Air Quality Research, 2018, 18, 1183-1197.	0.9	12
27	Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1312-1320.	1.5	11
28	Tuning CO ₂ Capture at the Gas/Amine Solution Interface by Changing the Solvent Polarity. Journal of Physical Chemistry B, 2020, 124, 10245-10256.	1.2	11
29	A quasiâ€liquid mediated continuum model of faceted ice dynamics. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,035.	1.2	10
30	Mechanism of anisotropic surface self-diffusivity at the prismatic ice–vapor interface. Physical Chemistry Chemical Physics, 2015, 17, 22947-22958.	1.3	8
31	Liquid–Gas Interface of Iron Aqueous Solutions and Fenton Reagents. Journal of Physical Chemistry Letters, 2022, 13, 2994-3001.	2.1	7
32	Adsorption and isomerization of glyoxal and methylglyoxal at the air/hydroxylated silica surface. Journal of Chemical Physics, 2020, 152, 164702.	1.2	4
33	Uptake and hydration of sulfur dioxide on dry and wet hydroxylated silica surfaces: a computational study. Physical Chemistry Chemical Physics, 2021, 24, 172-179.	1.3	4
34	Computational Evolution Protocol for Peptide Design. Methods in Molecular Biology, 2022, 2405, 335-359.	0.4	3
35	Reply to "Comment on â€~Liquid–Gas Interface of Iron Aqueous Solutions and Fenton Reagents'― Jou of Physical Chemistry Letters, 2022, 13, 6681-6682.	rnal 2.1	2
36	Solvation and Stabilization of Single-Strand RNA at the Air/Ice Interface Support a Primordial RNA World on Ice. Journal of Physical Chemistry C, 2020, 124, 18587-18594.	1.5	1

#	Article	IF	CITATIONS
37	Molecular Dynamics of Ice, Ice Surfaces and Impurities on Ice. , 2022, , 173-257.		ο