
Hideaki Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7625964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 2016, 138, 984-1010.	1.5	612
2	IL-33 is a crucial amplifier of innate rather than acquired immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18581-18586.	3.3	594
3	Application of moisturizer to neonates prevents development of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2014, 134, 824-830.e6.	1.5	532
4	Distribution of ACE2, CD147, CD26, and other SARSâ€CoVâ€2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVIDâ€19 risk factors. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2829-2845.	2.7	403
5	Basophil-Derived Interleukin-4 Controls the Function of Natural Helper Cells, a Member of ILC2s, in Lung Inflammation. Immunity, 2014, 40, 758-771.	6.6	263
6	An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43, 175-186.	6.6	240
7	IL-33 Mediates Inflammatory Responses in Human Lung Tissue Cells. Journal of Immunology, 2010, 185, 5743-5750.	0.4	211
8	Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 141, 300-310.e11.	1.5	182
9	Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nature Communications, 2017, 8, 593.	5.8	175
10	Innate lymphoid cells in allergic and nonallergic inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1253-1264.	1.5	162
11	Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. Journal of Allergy and Clinical Immunology, 2019, 143, 2190-2201.e9.	1.5	133
12	Immunology of COVIDâ€19: Mechanisms, clinical outcome, diagnostics, and perspectives—A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2445-2476.	2.7	132
13	IL-10–overexpressing B cells regulate innate and adaptive immune responses. Journal of Allergy and Clinical Immunology, 2015, 135, 771-780.e8.	1.5	123
14	Four distinct subtypes of non–IgE-mediated gastrointestinal food allergies in neonates and infants, distinguished by their initial symptoms. Journal of Allergy and Clinical Immunology, 2011, 127, 685-688.e8.	1.5	117
15	Interleukinâ€33 in allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1203-1214.	2.7	96
16	Epithelial Cell-Derived IL-25, but Not Th17 Cell-Derived IL-17 or IL-17F, Is Crucial for Murine Asthma. Journal of Immunology, 2012, 189, 3641-3652.	0.4	93
17	Antigen-specific T-cell responses in patients with non–IgE-mediated gastrointestinal food allergy are predominantly skewed to TH2. Journal of Allergy and Clinical Immunology, 2013, 131, 590-592.e6.	1.5	91
18	Role of Interleukin-33 in Innate-Type Immune Cells in Allergy. Allergology International, 2013, 62, 13-20.	1.4	68

#	Article	IF	CITATIONS
19	The Complex Type 2 Endotype in Allergy and Asthma: From Laboratory to Bedside. Current Allergy and Asthma Reports, 2015, 15, 29.	2.4	65
20	IL-31 is crucial for induction of pruritus, but not inflammation, in contact hypersensitivity. Scientific Reports, 2018, 8, 6639.	1.6	65
21	Non–IgE-Mediated Gastrointestinal Food Allergies: Distinct Differences in Clinical Phenotype Between Western Countries and Japan. Current Allergy and Asthma Reports, 2012, 12, 297-303.	2.4	64
22	Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. Journal of Allergy and Clinical Immunology, 2021, 147, 1865-1877.	1.5	61
23	Der p 1â€specific regulatory T ell response during house dust mite allergen immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 976-985.	2.7	60
24	Gastrointestinal Food Allergy in Infants. Allergology International, 2013, 62, 297-307.	1.4	59
25	Platelets constitutively express IL-33 protein and modulate eosinophilic airway inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 1395-1403.e6.	1.5	48
26	Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation. PLoS ONE, 2011, 6, e18404.	1.1	45
27	IL-25 enhances TH17 cell–mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. Journal of Allergy and Clinical Immunology, 2018, 142, 1500-1509.e10.	1.5	41
28	Human type 2 innate lymphoid cells disrupt skin keratinocyte tight junction barrier by ILâ€13. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2534-2537.	2.7	36
29	Direct assessment of skin epithelial barrier by electrical impedance spectroscopy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1934-1944.	2.7	36
30	Comparison of gene expression profiles in eosinophilic esophagitis (EoE) between Japan and Western countries. Allergology International, 2015, 64, 260-265.	1.4	34
31	IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Scientific Reports, 2018, 8, 18052.	1.6	34
32	IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. PLoS ONE, 2015, 10, e0134226.	1.1	34
33	Regulatory roles of mast cells in immune responses. Seminars in Immunopathology, 2016, 38, 623-629.	2.8	32
34	β ₂ -Adrenoceptor Agonists Enhance Cytokine-Induced Release of Thymic Stromal Lymphopoietin by Lung Tissue Cells. International Archives of Allergy and Immunology, 2010, 152, 353-361.	0.9	31
35	Antiâ€inflammatory effects of highâ€dose <scp>I</scp> g <scp>G</scp> on <scp>TNF</scp> â€i±â€activated hum coronary artery endothelial cells. European Journal of Immunology, 2012, 42, 2121-2131.	an 1.6	31
36	CpG-DNA enhances the tight junction integrity of the bronchial epithelial cell barrier. Journal of Allergy and Clinical Immunology, 2015, 136, 1413-1416.e8.	1.5	30

#	Article	IF	CITATIONS
37	IL-10–producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. Journal of Allergy and Clinical Immunology, 2021, 147, 1507-1510.e8.	1.5	29
38	A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro. PLoS ONE, 2017, 12, e0177994.	1.1	27
39	ST2 Requires Th2-, but Not Th17-, Type Airway Inflammation in Epicutaneously Antigen-Sensitized Mice. Allergology International, 2012, 61, 265-273.	1.4	26
40	Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Scientific Reports, 2018, 8, 11721.	1.6	26
41	Development of IL-17-mediated Delayed-Type Hypersensitivity Is Not Affected by Down-Regulation of IL-25 Expression. Allergology International, 2010, 59, 399-408.	1.4	25
42	Recent dramatic increase in patients with food protein–induced enterocolitis syndrome (FPIES) provoked by hen's egg in Japan. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1110-1112.e2.	2.0	25
43	IL-33 in clinical practice: Size matters?. Journal of Allergy and Clinical Immunology, 2017, 140, 381-383.	1.5	24
44	Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergology International, 2018, 67, 326-333.	1.4	24
45	Gene expression signatures of circulating human type 1, 2, and 3 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2019, 143, 2321-2325.	1.5	24
46	Effect of oral immunotherapy in children with milk allergy: The ORIMA study. Allergology International, 2021, 70, 223-228.	1.4	24
47	Sera of patients with infantile eosinophilic gastroenteritis showed a specific increase in both thymic stromal lymphopoietin and IL-33 levels. Journal of Allergy and Clinical Immunology, 2016, 138, 299-303.	1.5	22
48	Innate lymphoid cells: The missing part of a puzzle in food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2002-2016.	2.7	18
49	The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Scientific Reports, 2018, 8, 15750.	1.6	17
50	Characteristics of tissue–resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3332-3348.	2.7	17
51	Silica and Double-Stranded RNA Synergistically Induce Bronchial Epithelial Apoptosis and Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 344-353.	1.4	16
52	Innate Lymphoid Cells in the Airways: Their Functions and Regulators. Allergy, Asthma and Immunology Research, 2020, 12, 381.	1.1	16
53	Innate lymphocyte cells in asthma phenotypes. Clinical and Translational Allergy, 2015, 5, 23.	1.4	15
54	Barrier dysfunction in the atopic march—how does atopic dermatitis lead to asthma in children?. Journal of Allergy and Clinical Immunology, 2020, 145, 1551-1553.	1.5	15

#	Article	IF	CITATIONS
55	TH2 cytokines potently induce an appetite-stimulating peptide, melanin-concentrating hormone, in human vascular endothelial cells. Journal of Allergy and Clinical Immunology, 2009, 124, 612-614.e2.	1.5	12
56	Eosinophilic Gastrointestinal Disorders in Infants: A Japanese Case Series. International Archives of Allergy and Immunology, 2011, 155, 40-45.	0.9	12
57	Human eosinophils constitutively express a unique serine protease, PRSS33. Allergology International, 2017, 66, 463-471.	1.4	12
58	IL-33 Is Essential for Adjuvant Effect of Hydroxypropyl-β-Cyclodexrin on the Protective Intranasal Influenza Vaccination. Frontiers in Immunology, 2020, 11, 360.	2.2	12
59	COVIDâ€19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals—EAACI recommendations. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2313-2336.	2.7	12
60	Food protein–induced enterocolitis syndromes with and without bloody stool have distinct clinicopathologic features. Journal of Allergy and Clinical Immunology, 2017, 140, 1718-1721.e6.	1.5	11
61	TLR7 Agonist Suppresses Group 2 Innate Lymphoid Cell–mediated Inflammation via IL-27–Producing Interstitial Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 309-318.	1.4	11
62	IgE-class–specific immunosuppression in offspring by administration of anti-IgE to pregnant mice. Journal of Allergy and Clinical Immunology, 2019, 143, 1261-1264.e6.	1.5	10
63	Strategic Outlook toward 2030: Japan's research for allergy and immunology – Secondary publication. Allergology International, 2020, 69, 561-570.	1.4	10
64	Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy?. Frontiers in Allergy, 2021, 2, 747323.	1.2	10
65	Multicenter retrospective study of patients with food protein–induced enterocolitis syndrome provoked by hen's egg. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 547-549.e1.	2.0	9
66	Eosinophil Extracellular Traps in the Casts of Plastic Bronchitis Associated With Influenza Virus Infection. Chest, 2021, 160, 854-857.	0.4	9
67	The optimal age for epicutaneous sensitization following tape-stripping in BALB/c mice. Allergology International, 2018, 67, 380-387.	1.4	8
68	Critical role of IL-33, but not IL-25 or TSLP, in silica crystal-mediated exacerbation of allergic airway eosinophilia. Biochemical and Biophysical Research Communications, 2020, 533, 493-500.	1.0	8
69	Cord blood eosinophilia precedes neonatal onset of food-protein-induced enterocolitis syndrome (FPIES). Allergology International, 2021, 70, 262-265.	1.4	8
70	Interleukin-33 and thymic stromal lymphopoietin, but not interleukin-25, are crucial for development of airway eosinophilia induced by chitin. Scientific Reports, 2021, 11, 5913.	1.6	8
71	IL-25, IL-33 and TSLP receptor are not critical for development of experimental murine malaria. Biochemistry and Biophysics Reports, 2016, 5, 191-195.	0.7	7
72	Direct platelet adhesion potentiates group 2 innate lymphoid cell functions. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 843-855.	2.7	7

#	Article	IF	CITATIONS
73	TIM-3 is not essential for development of airway inflammation induced by house dust mite antigens. Allergology International, 2016, 65, 459-465.	1.4	5
74	Amphiregulin is Not Essential for Induction of Contact Hypersensitivity. Allergology International, 2010, 59, 277-284.	1.4	4
75	TSLP receptor is not essential for house dust mite-induced allergic rhinitis in mice. Biochemistry and Biophysics Reports, 2016, 7, 119-123.	0.7	4
76	Isolation and characterization of fetal nucleated red blood cells from maternal blood as a target for single cell sequencingâ€based nonâ€invasive genetic testing. Reproductive Medicine and Biology, 2021, 20, 352-360.	1.0	4
77	Immune checkpoint molecules on ILC2s as potential therapeutic targets for allergic diseases. Journal of Allergy and Clinical Immunology, 2022, 149, 60-62.	1.5	4
78	Measurement of allergen-specific secretory IgA in stool of neonates, infants and toddlers by protection against degradation of immunoglobulins and allergens. Journal of Medical Investigation, 2015, 62, 137-144.	0.2	3
79	TSLP is a negative regulator of RANKL-induced osteoclastogenesis. Biochemical and Biophysical Research Communications, 2020, 530, 508-512.	1.0	3
80	New insights into human atopic dermatitis provided by mouse models. Journal of Allergy and Clinical Immunology, 2021, 148, 722-724.	1.5	3
81	Protease-digested egg-white products induce oral tolerance in mice but elicit little IgE production upon epicutaneous exposure. Allergology International, 2022, , .	1.4	3
82	Rehabilitation of Post-Stroke Hemiplegic Patients â…;. Restudying Functional Assessment's Methods. Journal of UOEH, 1989, 11, 275-285.	0.3	1
83	Type 3 innate lymphoid cells induce proliferation of CD94+ natural killer cells. Journal of Allergy and Clinical Immunology, 2017, 140, 1156-1159.e7.	1.5	1
84	Research impact analysis of international funding agencies in the realm of allergy and immunology. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1602-1606.	2.7	1
85	Evaluation of adrenaline auto-injector prescription profiles: A population-based, retrospective cohort study within the National Insurance Claims Database of Japan. Allergology International, 2022, 71, 354-361.	1.4	1
86	Diversities of allergic pathologies and their modifiers: Report from the second DGAKI-JSA meeting. Allergology International, 2022, 71, 310-317.	1.4	1
87	Immunological memory and allergic diseases. Allergology International, 2021, 70, 161-162.	1.4	0
88	Thermal Homeostasis of Legless Men at Different Ambient Temperatures. Journal of UOEH, 1982, 4, 279-288.	0.3	0
89	Virusâ€related stimuli modulate SARSâ€CoVâ€2 entry factor expression in pediatric tonsillar epithelial cells <i>in vitro</i> . Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2240-2242.	2.7	0