

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Reduction of N ₂ under Ambient Conditions for Artificial N ₂ Fixation and Renewable Energy Storage Using N ₂ /NH ₃ Cycle. Advanced Materials, 2017, 29, 1604799.	11.1	969
2	In Situ Coupling of Strung Co ₄ N and Intertwined N–C Fibers toward Free-Standing Bifunctional Cathode for Robust, Efficient, and Flexible Zn–Air Batteries. Journal of the American Chemical Society, 2016, 138, 10226-10231.	6.6	839
3	Au Subâ€Nanoclusters on TiO ₂ toward Highly Efficient and Selective Electrocatalyst for N ₂ Conversion to NH ₃ at Ambient Conditions. Advanced Materials, 2017, 29, 1606550.	11.1	785
4	Amorphizing of Au Nanoparticles by CeO <i>_x</i> –RGO Hybrid Support towards Highly Efficient Electrocatalyst for N ₂ Reduction under Ambient Conditions. Advanced Materials, 2017, 29, 1700001.	11.1	518
5	Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N ₂ to NH ₃ under Ambient Conditions in Aqueous Solution. Advanced Energy Materials, 2018, 8, 1800124.	10.2	454
6	A Biodegradable Polydopamineâ€Derived Electrode Material for Highâ€Capacity and Longâ€Life Lithiumâ€Ion and Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 10662-10666.	7.2	325
7	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2019, 58, 9464-9469.	7.2	226
8	High-Energy-Density Flexible Potassium-Ion Battery Based on Patterned Electrodes. Joule, 2018, 2, 736-746.	11.7	199
9	A Biodegradable Polydopamineâ€Derived Electrode Material for Highâ€Capacity and Longâ€Life Lithiumâ€Ion and Sodiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 10820-10824.	1.6	131
10	Decorating Waste Cloth via Industrial Wastewater for Tubeâ€Type Flexible and Wearable Sodiumâ€lon Batteries. Advanced Materials, 2017, 29, 1603719.	11.1	131
11	Engineering Ultrathin C ₃ N ₄ Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst. ACS Catalysis, 2018, 8, 3965-3970.	5.5	130
12	In Situ Coupling FeM (M = Ni, Co) with Nitrogenâ€Doped Porous Carbon toward Highly Efficient Trifunctional Electrocatalyst for Overall Water Splitting and Rechargeable Zn–Air Battery. Advanced Sustainable Systems, 2017, 1, 1700020.	2.7	122
13	Bloodâ€Capillaryâ€Inspired, Freeâ€Standing, Flexible, and Lowâ€Cost Superâ€Hydrophobic Nâ€CNTs@SS Cathoo for Highâ€Capacity, Highâ€Rate, and Stable Liâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1702242.	des 10.2	108
14	Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Research, 2018, 11, 1294-1300.	5.8	103
15	Amorphous, Crystalline and Crystalline/Amorphous Selenium Nanowires and Their Different (De)Lithiation Mechanisms. Chemistry of Materials, 2015, 27, 6730-6736.	3.2	96
16	Tailoring Oxygen Vacancies of BiVO ₄ toward Highly Efficient Nobleâ€Metalâ€Free Electrocatalyst for Artificial N ₂ Fixation under Ambient Conditions. Small Methods, 2019, 3, 1800333.	4.6	84
17	Highâ€Performance Integrated Selfâ€Package Flexible Li–O ₂ Battery Based on Stable Composite Anode and Flexible Gas Diffusion Layer. Advanced Materials, 2017, 29, 1700378.	11.1	72
18	Synthesis of Crystalline/Amorphous Core/Shell MoO ₃ Composites through a Controlled Dehydration Route and Their Enhanced Ethanol Sensing Properties. Crystal Growth and Design, 2014, 14, 569-575.	1.4	55

Dι ΒΑΟ

#	Article	IF	CITATIONS
19	Composition-tunable synthesis of "clean―syngas via a one-step synthesis of metal-free pyridinic-N-enriched self-supported CNTs: the synergy of electrocatalyst pyrolysis temperature and potential. Green Chemistry, 2017, 19, 4284-4288.	4.6	53
20	ZnO/ZnS Heterostructured Nanorod Arrays and Their Efficient Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2015, 21, 12728-12734.	1.7	50
21	The preparation of Co9S8 and CoS2 nanoparticles by a high energy ball-milling method and their electrochemical hydrogen storage properties. International Journal of Hydrogen Energy, 2014, 39, 9300-9306.	3.8	47
22	Generating Defectâ€Rich Bismuth for Enhancing the Rate of Nitrogen Electroreduction to Ammonia. Angewandte Chemie, 2019, 131, 9564-9569.	1.6	47
23	Mechanical Ball-Milling Preparation of Fullerene/Cobalt Core/Shell Nanocomposites with High Electrochemical Hydrogen Storage Ability. ACS Applied Materials & Interfaces, 2014, 6, 2902-2909.	4.0	46
24	Ball-milling preparation of one-dimensional Co–carbon nanotube and Co–carbon nanofiber core/shell nanocomposites with high electrochemical hydrogen storage ability. Journal of Power Sources, 2014, 255, 318-324.	4.0	41
25	Mechanical ball-milling preparation of mass sandwich-like cobalt–graphene nanocomposites with high electrochemical hydrogen storage ability. Journal of Materials Chemistry A, 2013, 1, 6731.	5.2	39
26	One Pot, Two Phases: Individual Orthorhombic and Face-Centered Cubic ZnSnO ₃ Obtained Synchronously in One Solution. Inorganic Chemistry, 2014, 53, 12289-12296.	1.9	31
27	Epitaxial Growth Route to Crystalline TiO ₂ Nanobelts with Optimizable Electrochemical Performance. ACS Applied Materials & Interfaces, 2013, 5, 368-373.	4.0	28
28	Cadmium hydroxide nanowires – new high capacity Ni–Cd battery anode materials without memory effect. Journal of Materials Chemistry, 2012, 22, 13922.	6.7	27
29	ZnO Nanorod Arrays and Hollow Spheres through a Facile Roomâ€Temperature Solution Route and Their Enhanced Ethanol Gasâ€Sensing Properties. ChemPlusChem, 2013, 78, 1266-1272.	1.3	25
30	Charge carrier dynamics investigation of Cu ₂ S–In ₂ S ₃ heterostructures for the conversion of dinitrogen to ammonia <i>via</i> photo-electrocatalytic reduction. Journal of Materials Chemistry A, 2021, 9, 10497-10507.	5.2	19
31	A binder-free, flexible cathode for rechargeable Na-O2 batteries. Chinese Journal of Catalysis, 2016, 37, 1172-1179.	6.9	18
32	Synthesis of Mesoporous MoO3Nanoribbons through a Multi-molybdate Coordination-Polymer-Precursor Route. European Journal of Inorganic Chemistry, 2012, 2012, 5831-5836.	1.0	17
33	Copper tetrazolate based metalâ€organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO ₂ conversion. Nano Select, 2020, 1, 311-319.	1.9	17
34	Topotactic conversion route to ultrafine crystalline TiO2 nanotubes with optimizable electrochemical performance. RSC Advances, 2013, 3, 6531.	1.7	13
35	Intracell Hydrogen Adsorption-Transmission in a Co2P Solid Hydrogen-Storage Material. European Journal of Inorganic Chemistry, 2016, 2016, 3371-3375.	1.0	11
36	Flattening sol–gel nanospheres into a carbon sheet-intercalated cobalt/carbon/cobalt sandwich-nanostructure. Inorganic Chemistry Frontiers, 2016, 3, 645-650.	3.0	4

Di Βάο

#	Article	IF	CITATIONS
37	Synthesis of Cd(OH)Cl hollow nano-spiremes from a dipolar binary liquid system and their conversion to Cd(OH)2 hollow nano-spiremes. New Journal of Chemistry, 2013, 37, 815.	1.4	3
38	Electrostatic Trapping of Double-Stranded DNA Based on Cd(OH) ₂ Three-Side Nanobelt Architectures. Journal of Physical Chemistry C, 2015, 119, 1953-1959.	1.5	3
39	Regulation of the electronic structure of perovskites to improve the electrocatalytic performance for the nitrogen-reduction reaction. Journal of Materials Chemistry A, 2022, 10, 2819-2825.	5.2	3
40	Macroporous ZnO Nanofilms and its Electrochemical Hydrogen Storage Ability. Advanced Materials Research, 2012, 457-458, 815-818.	0.3	2