Hongju Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7625042/publications.pdf Version: 2024-02-01

Номени Ми

#	Article	IF	CITATIONS
1	Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplantation, 2020, 29, 096368972095865.	1.2	6
2	Intracrine Testosterone Activation in Human Pancreatic β-Cells Stimulates Insulin Secretion. Diabetes, 2020, 69, 2392-2399.	0.3	13
3	Genetic strategy to decrease complement activation with adenoviral therapies. PLoS ONE, 2019, 14, e0215226.	1.1	4
4	GLP-1 Receptor in Pancreatic α-Cells Regulates Glucagon Secretion in a Glucose-Dependent Bidirectional Manner. Diabetes, 2019, 68, 34-44.	0.3	61
5	Development of insulin resistance in Nischarin mutant female mice. International Journal of Obesity, 2019, 43, 1046-1057.	1.6	10
6	GRP94 Is an Essential Regulator of Pancreatic β-Cell Development, Mass, and Function in Male Mice. Endocrinology, 2018, 159, 1062-1073.	1.4	21
7	Carbon Monoxide Inhibits Islet Apoptosis <i>via</i> Induction of Autophagy. Antioxidants and Redox Signaling, 2018, 28, 1309-1322.	2.5	21
8	Regenerating β cells of the pancreas – potential developments in diabetes treatment. Expert Opinion on Biological Therapy, 2018, 18, 175-185.	1.4	11
9	Differential Effects of Linagliptin on the Function of Human Islets Isolated from Non-diabetic and Diabetic Donors. Scientific Reports, 2017, 7, 7964.	1.6	10
10	Effects of Linagliptin on Pancreatic α Cells of Type 1 Diabetic Mice. Journal of the Endocrine Society, 2017, 1, 1224-1234.	0.1	1
11	Extranuclear Actions of the Androgen Receptor Enhance Glucose-Stimulated Insulin Secretion in the Male. Cell Metabolism, 2016, 23, 837-851.	7.2	130
12	Intra-islet glucagon-like peptide 1. Journal of Diabetes and Its Complications, 2016, 30, 1651-1658.	1.2	33
13	PAX4 Gene Transfer Induces α-to-β Cell Phenotypic Conversion and Confers Therapeutic Benefits for Diabetes Treatment. Molecular Therapy, 2016, 24, 251-260.	3.7	42
14	Progressive change of intraâ€islet GLPâ€1 production during diabetes development. Diabetes/Metabolism Research and Reviews, 2014, 30, 661-668.	1.7	36
15	Gene transfer of active Akt1 by an infectivity-enhanced adenovirus impacts β-cell survival and proliferation differentially in vitro and in vivo. Islets, 2012, 4, 366-378.	0.9	20
16	Regeneration of Pancreatic Non-β Endocrine Cells in Adult Mice following a Single Diabetes-Inducing Dose of Streptozotocin. PLoS ONE, 2012, 7, e36675.	1.1	43
17	Adenovirus Infection Activates Akt1 and Induces Cell Proliferation in Pancreatic Islets1. Transplantation, 2009, 87, 821-824.	0.5	6
18	Fiber-modified Adenoviruses for Targeted Gene Therapy. , 2008, 434, 113-132.		14

Номсји Wu

#	Article	IF	CITATIONS
19	Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy. Virology Journal, 2007, 4, 103.	1.4	13
20	DOUBLE GENETIC MODIFICATION OF ADENOVIRUS FIBER WITH RGD POLYLYSINE MOTIFS SIGNIFICANTLY ENHANCES GENE TRANSFER TO ISOLATED HUMAN PANCREATIC ISLETS1. Transplantation, 2003, 76, 252-261.	0.5	19
21	Construction and Characterization of Adenovirus Serotype 5 Packaged by Serotype 3 Hexon. Journal of Virology, 2002, 76, 12775-12782.	1.5	94
22	Double Modification of Adenovirus Fiber with RGD and Polylysine Motifs Improves Coxsackievirus–Adenovirus Receptor-Independent Gene Transfer Efficiency. Human Gene Therapy, 2002, 13, 1647-1653.	1.4	127