Sang-Hyun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7624925/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Oxygen-Recovery Assay for High-Throughput Screening of Compounds against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 1380-1385.	3.2	286
2	Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis, 2012, 92, 453-488.	1.9	193
3	Advent of Imidazo[1,2- <i>a</i>]pyridine-3-carboxamides with Potent Multi- and Extended Drug Resistant Antituberculosis Activity. ACS Medicinal Chemistry Letters, 2011, 2, 466-470.	2.8	161
4	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	3.2	148
5	New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Translational Research, 2020, 220, 68-97.	5.0	97
6	Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorganic and Medicinal Chemistry, 2012, 20, 2214-2220.	3.0	96
7	QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. European Journal of Medicinal Chemistry, 2017, 137, 126-138.	5.5	96
8	A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. Journal of Antimicrobial Chemotherapy, 2008, 62, 1037-1045.	3.0	94
9	Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis. Methods in Molecular Biology, 2015, 1285, 281-292.	0.9	84
10	Identification of Novel Inhibitors of Nonreplicating Mycobacterium tuberculosis Using a Carbon Starvation Model. ACS Chemical Biology, 2013, 8, 2224-2234.	3.4	79
11	Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	68
12	Arrival of Imidazo[2,1- <i>b</i>]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB. ACS Infectious Diseases, 2016, 2, 393-398.	3.8	64
13	Design, synthesis and investigation on the structure–activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents. European Journal of Medicinal Chemistry, 2014, 72, 26-34.	5.5	58
14	In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. Journal of Antimicrobial Chemotherapy, 2008, 62, 547-554.	3.0	55
15	Design, Syntheses, and Anti-TB Activity of 1,3-Benzothiazinone Azide and Click Chemistry Products Inspired by BTZ043. ACS Medicinal Chemistry Letters, 2016, 7, 266-270.	2.8	54
16	ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis, 2006, 86, 445-460.	1.9	52
17	Discovery and Characterization of the Tuberculosis Drug Lead Ecumicin. Organic Letters, 2014, 16, 6044-6047.	4.6	50
18	Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. Journal of Antibiotics, 2019, 72, 719-728.	2.0	50

2

Sang-Hyun Cho

#	Article	IF	CITATIONS
19	Efficacy of Quinoxaline-2-Carboxylate 1,4-Di- N -Oxide Derivatives in Experimental Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 3321-3326.	3.2	46
20	Syntheses and Antituberculosis Activity of 1,3-Benzothiazinone Sulfoxide and Sulfone Derived from BTZ043. ACS Medicinal Chemistry Letters, 2015, 6, 128-133.	2.8	45
21	Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources. ACS Infectious Diseases, 2016, 2, 294-301.	3.8	43
22	Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. Journal of Medicinal Chemistry, 2017, 60, 8647-8660.	6.4	43
23	Mutation in <i>clpC1</i> encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in <i>Mycobacterium tuberculosis</i> . Emerging Microbes and Infections, 2017, 6, 1-2.	6.5	41
24	High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. ACS Infectious Diseases, 2019, 5, 829-840.	3.8	40
25	Antiâ€TB polyynes from the roots of <i>Angelica sinensis</i> . Phytotherapy Research, 2008, 22, 878-882.	5.8	38
26	Chlorinated Coumarins from the Polypore Mushroom <i>Fomitopsis officinalis</i> and Their Activity against <i>Mycobacterium tuberculosis</i> . Journal of Natural Products, 2013, 76, 1916-1922.	3.0	38
27	Scaffold-switching: An exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo[1,2-a]pyridine-3-carboxylates. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3493-3498.	2.2	38
28	Putting Tuberculosis (TB) To Rest: Transformation of the Sleep Aid, Ambien, and "Anagrams―Generated Potent Antituberculosis Agents. ACS Infectious Diseases, 2015, 1, 85-90.	3.8	38
29	Design and Syntheses of Anti-Tuberculosis Agents Inspired by BTZ043 Using a Scaffold Simplification Strategy. ACS Medicinal Chemistry Letters, 2014, 5, 587-591.	2.8	33
30	Diaza-anthracene Antibiotics from a Freshwater-Derived Actinomycete with Selective Antibacterial Activity toward <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2015, 1, 168-174.	3.8	32
31	Eucapsitrione, an Anti- <i>Mycobacterium tuberculosis</i> Anthraquinone Derivative from the Cultured Freshwater Cyanobacterium <i>Eucapsis</i> sp Journal of Natural Products, 2010, 73, 1441-1443.	3.0	31
32	Antimycobacterial Rufomycin Analogues from <i>Streptomyces atratus</i> Strain MJM3502. Journal of Natural Products, 2020, 83, 657-667.	3.0	28
33	Imidazo[1,2- <i>a</i>]Pyridine-3-Carboxamides Are Active Antimicrobial Agents against Mycobacterium avium Infection <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 5018-5022.	3.2	25
34	Library Synthesis Using 5,6,7,8-Tetrahydro-1,6-naphthyridines as Scaffolds. ACS Combinatorial Science, 2008, 10, 534-540.	3.3	24
35	Residual Complexity Does Impact Organic Chemistry and Drug Discovery: The Case of Rufomyazine and Rufomycin. Journal of Organic Chemistry, 2018, 83, 6664-6672.	3.2	24
36	Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallographica Section D: Structural Biology, 2020. 76. 458-471.	2.3	23

Sang-Hyun Cho

#	Article	IF	CITATIONS
37	Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045. Bioorganic and Medicinal Chemistry, 2015, 23, 3153-3162.	3.0	22
38	Suadimins A–C, Unprecedented Dimeric Quinoline Alkaloids with Antimycobacterial Activity from <i>Melodinus suaveolens</i> . Organic Letters, 2019, 21, 7065-7068.	4.6	20
39	Hytramycins V and I, Anti-Mycobacterium tuberculosisHexapeptides from aStreptomyces hygroscopicusStrain. Journal of Natural Products, 2013, 76, 2009-2018.	3.0	18
40	Allylic thiocyanates as a new class of antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6486-6489.	2.2	17
41	Antimicrobial Lavandulylated Flavonoids from a Sponge-Derived Streptomyces sp. G248 in East Vietnam Sea. Marine Drugs, 2019, 17, 529.	4.6	16
42	Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2068-2071.	2.2	12
43	Syntheses and biological evaluations of highly functionalized hydroxamate containing and <i>N</i> -methylthio monobactams as anti-tuberculosis and β-lactamase inhibitory agents. MedChemComm, 2016, 7, 141-147.	3.4	12
44	NOC Chemistry for Tuberculosis—Further Investigations on the Structure–Activity Relationships of Antitubercular Isoxazoleâ€3 arboxylic Acid Ester Derivatives. ChemMedChem, 2010, 5, 1667-1672.	3.2	11
45	Syntheses and evaluation of substituted aromatic hydroxamates and hydroxamic acids that target Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4933-4936.	2.2	11
46	Rufomycins or llamycins: Naming Clarifications and Definitive Structural Assignments. Journal of Natural Products, 2021, 84, 2644-2663.	3.0	10
47	Structural Sequencing of Oligopeptides Aided by ¹ H Iterative Full-Spin Analysis. Journal of Natural Products, 2017, 80, 2630-2643.	3.0	9
48	<i>In Vitro</i> Profiling of Antitubercular Compounds by Rapid, Efficient, and Nondestructive Assays Using Autoluminescent Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0028221.	3.2	9
49	Antimycobacterial activity of pyrazinoate prodrugs in replicating and non-replicating Mycobacterium tuberculosis. Tuberculosis, 2016, 99, 11-16.	1.9	7
50	A novel combinatorial biocatalytic approach for producing antibacterial compounds effective against Mycobacterium tuberculosis (TB). Applied Microbiology and Biotechnology, 2013, 97, 7151-7163.	3.6	6
51	Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials. ChemMedChem, 2017, 12, 1616-1626.	3.2	4
52	Discovery of an Interleukin 33 Inhibitor by Molecular Docking Simulation and <scp>NMR</scp> Analysis. Bulletin of the Korean Chemical Society, 2016, 37, 117-118.	1.9	3
53	Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Frontiers in Microbiology, 2021, 12, 695024.	3.5	3