
Pontus B Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7624764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two groups receive ultimate award for scientific publishing, the USD\$ 100Â000 <i>Acta Physiologica Award</i> . Acta Physiologica, 2022, 234, e13738.	3.8	1
2	Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy. Free Radical Biology and Medicine, 2022, 179, 288-300.	2.9	15
3	Scientific due diligence [in times of need for reliable information]. Acta Physiologica, 2022, 234, e13740.	3.8	2
4	Good publication practice in physiology 2021. Acta Physiologica, 2022, 234, e13741.	3.8	18
5	rhADAMTS13 reduces oxidative stress by cleaving VWF in ischaemia/reperfusionâ€induced acute kidney injury. Acta Physiologica, 2022, 234, e13778.	3.8	6
6	Physiological research in an attention economy. Acta Physiologica, 2022, 234, e13797.	3.8	1
7	Illuminating physiology. Acta Physiologica, 2022, 235, e13814.	3.8	Ο
8	Open access to Ukrainian thoughts, not to their soil. Acta Physiologica, 2022, 234, e13810.	3.8	0
9	Acta Physiologica, member of the top 5% club. Acta Physiologica, 2022, 235, e13807.	3.8	2
10	Perception. Acta Physiologica, 2022, 235, e13842.	3.8	2
11	A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiologica, 2022, 235, .	3.8	7
12	Nitric Oxide Signalling in Descending Vasa Recta after Hypoxia/Re-Oxygenation. International Journal of Molecular Sciences, 2022, 23, 7016.	4.1	4
13	ADAMTS13 inhibits oxidative stress and ameliorates progressive chronic kidney disease following ischaemia/reperfusion injury. Acta Physiologica, 2021, 231, e13586.	3.8	9
14	High phosphate impairs arterial endothelial function through AMPKâ€related pathways in mouse resistance arteries. Acta Physiologica, 2021, 231, e13595.	3.8	11
15	Pregnancy. Acta Physiologica, 2021, 231, e13582.	3.8	0
16	SARS oVâ€⊋ effects on the reninâ€angiotensinâ€aldosterone system, therapeutic implications. Acta Physiologica, 2021, 231, e13608.	3.8	15
17	Kidney injury as post-interventional complication of TAVI. Clinical Research in Cardiology, 2021, 110, 313-322.	3.3	6
18	Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nature Reviews Nephrology, 2021, 17, 335-349.	9.6	140

#	Article	IF	CITATIONS
19	New impact factor calculation dramatically affects publishing: What authors should know. Acta Physiologica, 2021, 232, e13633.	3.8	2
20	Record in submissions to Acta Physiologica. Acta Physiologica, 2021, 231, e13614.	3.8	3
21	Growth. Acta Physiologica, 2021, 231, e13617.	3.8	1
22	Oustanding articles 2020. Acta Physiologica, 2021, 232, e13621.	3.8	2
23	Environment and exposure. Acta Physiologica, 2021, 231, e13632.	3.8	1
24	Podocyte apoptosis in diabetic nephropathy by BASP1 activation of the p53 pathway via WT1. Acta Physiologica, 2021, 232, e13634.	3.8	15
25	This month in Acta Physiologica: A record in volume size. Acta Physiologica, 2021, 232, e13639.	3.8	2
26	Thank you Mikko Nikinmaa!. Acta Physiologica, 2021, 232, e13654.	3.8	0
27	A further increase in Acta Physiologica's impact factor. Acta Physiologica, 2021, 233, e13710.	3.8	4
28	Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension. Redox Biology, 2021, 46, 102115.	9.0	86
29	Age Impairs Soluble Guanylyl Cyclase Function in Mouse Mesenteric Arteries. International Journal of Molecular Sciences, 2021, 22, 11412.	4.1	7
30	A broad diversity in oxygen affinity to haemoglobin. Scientific Reports, 2020, 10, 16920.	3.3	18
31	Found formula for outperforming manuscripts. Acta Physiologica, 2020, 230, e13515.	3.8	Ο
32	Mirror, mirror on the wall, which physiology journal is the fairest of all?. Acta Physiologica, 2020, 229, e13462.	3.8	1
33	Bibliometrics for 2019: For the third year in row, the impact factor is between five and six. Acta Physiologica, 2020, 230, e13534.	3.8	5
34	Acta Physiologica in numbers, performance indicators for 2019. Acta Physiologica, 2020, 228, e13456.	3.8	6
35	National funding agencies upgrade <i>Acta Physiologica</i> . Acta Physiologica, 2020, 229, e13453.	3.8	5
36	Reactive oxygen species in renal vascular function. Acta Physiologica, 2020, 229, e13477.	3.8	28

#	Article	IF	CITATIONS
37	Predation in science. Acta Physiologica, 2019, 227, e13355.	3.8	Ο
38	Acta Physiologica's impact factor is once more well above five. Acta Physiologica, 2019, 227, e13340.	3.8	4
39	Requested reviewers are nicer! Insight into manuscript scoring. Acta Physiologica, 2019, 226, e13326.	3.8	1
40	Upcoming Acta Physiologica Award of US\$ 100,000.00. Acta Physiologica, 2019, 227, e13369.	3.8	0
41	Foetal programming. Acta Physiologica, 2019, 227, e13403.	3.8	5
42	Good publication practice in physiology 2019. Acta Physiologica, 2019, 227, e13405.	3.8	43
43	Kidney damage by iodinated contrast media. Acta Physiologica, 2019, 227, e13259.	3.8	5
44	How we rate manuscripts. Acta Physiologica, 2019, 227, e13327.	3.8	1
45	Another record in submissions to Acta Physiologica. Acta Physiologica, 2019, 225, e13218.	3.8	4
46	Circadian rhythms. Acta Physiologica, 2019, 225, e13220.	3.8	5
47	Episodic Hypoxia Promotes Defence Against Cellular Stress. Cellular Physiology and Biochemistry, 2019, 52, 1075-1091.	1.6	8
48	Hypoxia-reoxygenation enhances murine afferent arteriolar vasoconstriction by angiotensin II. American Journal of Physiology - Renal Physiology, 2018, 314, F430-F438.	2.7	4
49	Jan did it. Acta Physiologica, 2018, 224, e13150.	3.8	3
50	cOAlition S troubles top journals. Acta Physiologica, 2018, 224, e13197.	3.8	2
51	On top: Another great year for <i>Acta Physiologica</i> . Acta Physiologica, 2018, 224, e13160.	3.8	7
52	Waste. Acta Physiologica, 2018, 223, e13062.	3.8	3
53	Hypoxia/Reoxygenation of Rat Renal Arteries Impairs Vasorelaxation via Modulation of Endothelium-Independent sGC/cGMP/PKG Signaling. Frontiers in Physiology, 2018, 9, 480.	2.8	10
54	Water is life. Acta Physiologica, 2018, 224, e13173.	3.8	4

4

#	Article	IF	CITATIONS
55	Understanding and preventing contrast-induced acute kidney injury. Nature Reviews Nephrology, 2017, 13, 169-180.	9.6	234
56	Acta Physiologica Award: outperforming original articles from 2015 to 2017. Acta Physiologica, 2017, 221, 155-156.	3.8	3
57	Short-term hypoxia and vasa recta function in kidney slices. Clinical Hemorheology and Microcirculation, 2017, 67, 475-484.	1.7	7
58	Low dose nitrite improves reoxygenation following renal ischemia in rats. Scientific Reports, 2017, 7, 14597.	3.3	12
59	Article submission is the true obstacle of publishing. Acta Physiologica, 2017, 221, 83-83.	3.8	2
60	2016 impact factor for Acta Physiologica is 4.9. Acta Physiologica, 2017, 220, 397-397.	3.8	4
61	Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma. Frontiers in Molecular Neuroscience, 2016, 9, 156.	2.9	12
62	Salt: a matter of balance. Acta Physiologica, 2016, 216, 262-264.	3.8	1
63	Did you know? Neocytolysis, how to halt EPO. Acta Physiologica, 2016, 218, n/a-n/a.	3.8	4
64	Fatigue. Acta Physiologica, 2016, 218, 3-4.	3.8	17
65	Effects of iodinated contrast media in a novel model for cerebral vasospasm. Arquivos De Neuro-Psiquiatria, 2015, 73, 125-131.	0.8	0
66	Pharmacodynamics and Pharmacokinetics of oral factor Xa inhibitors. Clinical Pharmacology: Advances and Applications, 2015, 7, 77.	1.2	1
67	Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Research, 2015, 43, 3219-3236.	14.5	38
68	Life, death and immortality. Acta Physiologica, 2015, 213, 1-2.	3.8	0
69	Shutdown of Achaete-scute Homolog-1 Expression by Heterogeneous Nuclear Ribonucleoprotein (hnRNP)-A2/B1 in Hypoxia. Journal of Biological Chemistry, 2014, 289, 26973-26988.	3.4	10
70	Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. American Journal of Physiology - Renal Physiology, 2014, 306, F864-F872.	2.7	59
71	Contrast Media Viscosity versus Osmolality in Kidney Injury: Lessons from Animal Studies. BioMed Research International, 2014, 2014, 1-15.	1.9	50
72	Low-Dose Nitrite Alleviates Early Effects of an X-ray Contrast Medium on Renal Hemodynamics and Oxygenation in Rats. Investigative Radiology, 2014, 49, 70-77.	6.2	21

#	Article	IF	CITATIONS
73	The Physiologist: Researcher, Inventor, Physician, Educator and Visionary. Acta Physiologica, 2013, 209, n/a-n/a.	3.8	1
74	Nitric Oxide Can Directly Mediate Renin Cell Recruitment. Hypertension, 2013, 61, 286-287.	2.7	0
75	Mechanisms of acute kidney injury. Acta Physiologica, 2013, 207, 430-431.	3.8	7
76	Who are our readers?. Acta Physiologica, 2013, 208, 137-137.	3.8	6
77	Tools of our trade. Acta Physiologica, 2013, 208, 289-291.	3.8	0
78	Use and Misuse of a Biomarker: Contrast-Medium-Induced Nephropathy and Serum Creatinine. Conference Papers in Medicine, 2013, 2013, 1-6.	0.6	0
79	Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta. American Journal of Physiology - Renal Physiology, 2012, 303, F1592-F1598.	2.7	58
80	lodinated Contrast Media Differentially Affect Afferent and Efferent Arteriolar Tone and Reactivity in Mice: A Possible Explanation for Reduced Glomerular Filtration Rate. Radiology, 2012, 265, 762-771.	7.3	39
81	Proof of Principle. Investigative Radiology, 2012, 47, 240-246.	6.2	15
82	Multilevel regulation of HIF-1 signaling by TTP. Molecular Biology of the Cell, 2012, 23, 4129-4141.	2.1	15
83	Contrast-induced kidney injury: mechanisms, risk factors, and prevention. European Heart Journal, 2012, 33, 2007-2015.	2.2	378
84	Assessing cardioâ€renal function in zebrafish larvae. Journal of Physiology, 2012, 590, 2545-2545.	2.9	0
85	Thoughts on publishing in physiology: a new chief editor takes on responsibility for Acta Physiologica (Oxford). Acta Physiologica, 2012, 204, 1-2.	3.8	5
86	<scp>C</scp> arl <scp>F</scp> riedrich <scp>W</scp> ilhelm <scp>L</scp> udwig, a fabled physiologist and mentor of <scp>S</scp> candinavian <scp>P</scp> hysiology Announcing the <scp>C</scp> arl <scp>L</scp> udwig Award for young authors in <scp>A</scp> cta <scp>P</scp> hysiologica (<scp>O</scp> xford). Acta Physiologica, 2012, 204, 289-290.	3.8	2
87	How is <scp>A</scp> cta <scp>P</scp> hysiologica (<scp>O</scp> xford) performing?. Acta Physiologica, 2012, 204, 461-463.	3.8	1
88	A tripling of readers: <scp>A</scp> cta <scp>P</scp> hysiologica takes off. Acta Physiologica, 2012, 205, 189-190.	3.8	5
89	Angiotensin II type 2 receptor mediates sex differences in mice renal interlobar arteries response to angiotensin II. Journal of Hypertension, 2012, 30, 1791-1798.	0.5	10
90	Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down. Frontiers in Molecular Neuroscience, 2011, 4, 1.	2.9	81

#	Article	IF	CITATIONS
91	Potassium homeostasis during nephrotic syndrome: signalling via filtered protein?. Journal of Physiology, 2011, 589, 3417-3417.	2.9	1
92	Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice. Nephrology Dialysis Transplantation, 2011, 26, 779-789.	0.7	36
93	Activation of the Bumetanide-sensitive Na+,K+,2Clâ^ Cotransporter (NKCC2) Is Facilitated by Tamm-Horsfall Protein in a Chloride-sensitive Manner. Journal of Biological Chemistry, 2011, 286, 30200-30210.	3.4	148
94	Renal Effects of Bicarbonate Versus Saline Infusion for Iso- and Lowosmolar Contrast Media in Rats. Investigative Radiology, 2011, 46, 672-677.	6.2	11
95	Constriction of the Vasa Recta, the Vessels Supplying the Area at Risk for Acute Kidney Injury, By Four Different Iodinated Contrast Media, Evaluating Ionic, Nonionic, Monomeric and Dimeric Agents. Investigative Radiology, 2010, 45, 453-457.	6.2	47
96	Aldosterone and vasopressin affect Â- and Â-ENaC mRNA translation. Nucleic Acids Research, 2010, 38, 5746-5760.	14.5	31
97	Up to 50-fold Increase in Urine Viscosity with Iso-osmolar Contrast Media in the Rat. Radiology, 2010, 256, 406-414.	7.3	71
98	Translational Regulation of the Human Achaete-scute Homologue-1 by Fragile X Mental Retardation Protein. Journal of Biological Chemistry, 2009, 284, 4255-4266.	3.4	51
99	Iodixanol, Constriction of Medullary Descending Vasa Recta, and Risk for Contrast Medium–induced Nephropathy. Radiology, 2009, 251, 697-704.	7.3	108
100	Norepinephrine increases calcium sensitivity of mouse afferent arteriole, thereby enhancing angiotensin II–mediated vasoconstriction. Kidney International, 2009, 76, 953-959.	5.2	16
101	The renin-angiotensin system and the third mechanism of renal blood flow autoregulation. American Journal of Physiology - Renal Physiology, 2009, 296, F1334-F1345.	2.7	41
102	Absolute Quantification of Regional Renal Blood Flow in Swine by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent. Investigative Radiology, 2009, 44, 125-134.	6.2	27
103	Norepinephrine Treatment Enhances the Constriction of the Afferent Arterioles to Angiotensin II by Increasing the Calcium Sensitivity. FASEB Journal, 2009, 23, 804.2.	0.5	0
104	Angiotensin II response in afferent arterioles of mice lacking either the endothelial or neuronal isoform of nitric oxide synthase. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R429-R437.	1.8	17
105	Wilms' tumor protein (—KTS) modulates renin gene transcription. Kidney International, 2008, 74, 458-466.	5.2	32
106	Joint analysis of a compendium gene expression data and 5′â€untranslated mRNA regions points to a common cisâ€regulatory region under epigenetic control. FASEB Journal, 2008, 22, 1024.2.	0.5	0
107	Fatty acid dependent regulation of renin transcription by nuclear hormone receptor HNFâ€4. FASEB Journal, 2008, 22, 735.9.	0.5	0
108	Adenosine enhances long term the contractile response to angiotensin II in afferent arterioles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2232-R2242.	1.8	15

#	Article	IF	CITATIONS
109	A last look: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2001–2007. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R665-R665.	1.8	0
110	Impact of α1-adrenoceptor expression on contractile properties of vascular smooth muscle cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1215-R1221.	1.8	11
111	Dissecting the action of an evolutionary conserved non-coding region on renin promoter activity. Nucleic Acids Research, 2007, 35, 5120-5129.	14.5	13
112	Viscosity of Contrast Media Perturbs Renal Hemodynamics. Journal of the American Society of Nephrology: JASN, 2007, 18, 2912-2920.	6.1	144
113	Evaluation and Comparison Between Visipaque (Iodixanol) and Hexabrix (Ioxaglate) in Coronary Angiography. Journal of the American College of Cardiology, 2007, 49, 1668-1669.	2.8	2
114	The magic mountain or death in Venice: chronic hypoxia may alleviate oxidative stress in the kidney. Journal of Physiology, 2007, 582, 1-1.	2.9	1
115	Wilms' Tumor Protein WT1(â€KTS) inhibits Renin gene transcription. FASEB Journal, 2007, 21, A896.	0.5	0
116	Cardiovascular variability and the autonomic nervous system. Journal of Hypertension, 2006, 24, 1902-1904.	0.5	8
117	Do Iodinated Contrast Media Interfere with Renal Tubular Creatinine Secretion?. Radiology, 2006, 240, 615-615.	7.3	11
118	Guest editor appreciation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R493-R493.	1.8	0
119	Temperature control: from molecular insights, regulation in king penguins and diving seals, to studies in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R512-R514.	1.8	2
120	Where we stand: American Journal of Physiology—Regulatory, Integrative and Comparative Physiology 2006. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R489-R490.	1.8	0
121	From clinical insights to new therapies. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R124-R125.	1.8	2
122	Translational Control of Collagen Prolyl 4-Hydroxylase-α(I) Gene Expression under Hypoxia. Journal of Biological Chemistry, 2006, 281, 26089-26101.	3.4	54
123	Heterogeneous Nuclear Ribonucleoprotein-A2/B1 Modulate Collagen Prolyl 4-Hydroxylase, α (I) mRNA Stability. Journal of Biological Chemistry, 2006, 281, 9279-9286.	3.4	45
124	Pathophysiology of contrast medium–induced nephropathy. Kidney International, 2005, 68, 14-22.	5.2	446
125	THE 'BODY FLUID PRESSURE CONTROL SYSTEM' RELIES ON THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM: BALANCE STUDIES IN FREELY MOVING DOGS. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 394-399.	1.9	14
126	ANGIOTENSIN II-NITRIC OXIDE INTERACTION IN GLOMERULAR ARTERIOLES. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 410-414.	1.9	27

#	Article	IF	CITATIONS
127	Fluid volume or arterial pressure, that is the question. Journal of Physiology, 2005, 567, 361-361.	2.9	0
128	Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1731, 32-40.	2.4	77
129	Contrast-induced nephropathy. European Radiology, Supplement, 2005, 15, d65-d69.	1.4	19
130	A look back at a successful year. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1535-R1535.	1.8	0
131	Mechanisms of blood pressure variability-induced cardiac hypertrophy and dysfunction in mice with impaired baroreflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R767-R776.	1.8	52
132	Checking back at 2004—it was a very good year. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R781-R781.	1.8	1
133	Baroreflexes in Hypertension. Hypertension, 2005, 46, 1095-1096.	2.7	14
134	Renal haemodynamic alterations in contrast medium-induced nephropathy and the benefit of hydration. Nephrology Dialysis Transplantation, 2005, 20, i2-i5.	0.7	41
135	Editorial: contrast medium-induced nephropathy. Nephrology Dialysis Transplantation, 2005, 20, i1-i1.	0.7	16
136	Mid-year progress report 2004. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R697-R697.	1.8	0
137	AT1 receptors mediate angiotensin II–induced release of nitric oxide in afferent arterioles. Kidney International, 2004, 66, 1949-1958.	5.2	81
138	Renin: origin, secretion and synthesis. Journal of Physiology, 2003, 552, 667-671.	2.9	122
139	Posttranscriptional Control of Renin Synthesis. Circulation Research, 2003, 92, 419-427.	4.5	82
140	Control of renin synthesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R491-R497.	1.8	29
141	An evolutionary approach for identifying potential transcription factor binding sites: the renin gene as an example. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1147-R1150.	1.8	12
142	Renal blood flow autoregulation in blood pressure control. Current Opinion in Nephrology and Hypertension, 2002, 11, 67-72.	2.0	41
143	Tubuloglomerular feedback in adenosine A1receptor-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1361-R1361.	1.8	7
144	Time versus frequency domain techniques for assessing baroreflex sensitivity. Journal of Hypertension, 2001, 19, 1699-1705.	0.5	98

#	Article	IF	CITATIONS
145	Time-Dependent Autoregulation of Renal Blood Flow in Conscious Rats. Journal of the American Society of Nephrology: JASN, 2001, 12, 2253-2262.	6.1	23
146	Interaction of Angiotensin II and Nitric Oxide in Isolated Perfused Afferent Arterioles of Mice. Journal of the American Society of Nephrology: JASN, 2001, 12, 1122-1127.	6.1	61
147	Low-Dose Nitric Oxide Inhibition Produces a Negative Sodium Balance in Conscious Dogs. Journal of the American Society of Nephrology: JASN, 2001, 12, 1128-1136.	6.1	9
148	High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. European Journal of Applied Physiology, 2000, 83, 388-394.	2.5	53
149	Role of Nitric Oxide in Buffering Short-Term Blood Pressure Fluctuations. Physiology, 2000, 15, 229-233.	3.1	28
150	Antihypertensive Effect of 0.1-Hz Blood Pressure Oscillations to the Kidney. Circulation, 2000, 101, 553-557.	1.6	35
151	Vascular Response to Angiotensin II in Atherosclerosis. Hypertension, 2000, 35, 685-690.	2.7	16
152	Oxygen and Renal Hemodynamics in the Conscious Rat. Journal of the American Society of Nephrology: JASN, 2000, 11, 18-24.	6.1	63
153	Pressure-dependent renin release: effects of sodium intake and changes of total body sodium. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R548-R555.	1.8	14
154	Frequency response characteristics of sympathetic transmission to skin vascular smooth muscles in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R591-R600.	1.8	21
155	Enhanced Blood Pressure Variability in eNOS Knockout Mice. Hypertension, 1999, 33, 1359-1363.	2.7	118
156	Physiological Regulation of Renal Blood Flow and Glomerular Filtration Rate by the Endothelium and Smooth Muscle. Blood Purification, 1997, 15, 219-227.	1.8	7
157	Dissociation of Blood Pressure and Blood Flow. Kidney and Blood Pressure Research, 1997, 20, 205-209.	2.0	0
158	Spectrum analysis of cardiovascular time series. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1201-R1210.	1.8	35
159	Identification of a Renin Threshold and Its Relationship to Salt Intake in a Patient With Pure Autonomic Failure. Hypertension, 1997, 30, 1068-1071.	2.7	2
160	Blood-pressure variability is buffered by nitric oxide. Journal of the Autonomic Nervous System, 1996, 57, 181-183.	1.9	21
161	Power Spectral Analysis of Heart Rate and Blood Pressure: Markers for Autonomic Balance Or Indicators of Baroreflex Control?. Clinical Science, 1995, 88, 1-2.	4.3	18
162	Does low frequency power of arterial blood pressure reflect sympathetic tone?. Journal of the Autonomic Nervous System, 1995, 54, 145-154.	1.9	70

#	Article	IF	CITATIONS
163	Resetting of renal autoregulation in conscious dogs: angiotensin II and alpha1-adrenoceptors. Pflugers Archiv European Journal of Physiology, 1990, 417, 42-47.	2.8	15
164	Importance of Neuropeptide Y in the Regulation of Kidney Function. Annals of the New York Academy of Sciences, 1990, 611, 156-165.	3.8	10
165	Resetting of pressure-dependent renin release by intrarenal α1-adrenoceptors in conscious dogs. Pflugers Archiv European Journal of Physiology, 1989, 413, 261-266.	2.8	34
166	Physiology of the renal baroreceptor mechanism of renin release and its role in congestive heart failure. American Journal of Cardiology, 1988, 62, 68E-71E.	1.6	23
167	A physiological role for pressure-dependent renin release in long-term blood pressure control. Pflugers Archiv European Journal of Physiology, 1987, 410, 450-456.	2.8	27