Yingze Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762444/publications.pdf Version: 2024-02-01

YINCZE CAO

#	Article	IF	CITATIONS
1	Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014, 2, 2445-2460.	10.3	1,052
2	Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation. ACS Applied Materials & amp; Interfaces, 2013, 5, 4438-4442.	8.0	310
3	Integrated oil separation and water purification by a double-layer TiO2-based mesh. Energy and Environmental Science, 2013, 6, 1147.	30.8	308
4	Thermo and pH Dual-Responsive Materials for Controllable Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 2026-2030.	8.0	257
5	A Solvothermal Route Decorated on Different Substrates: Controllable Separation of an Oil/Water Mixture to a Stabilized Nanoscale Emulsion. Advanced Materials, 2015, 27, 7349-7355.	21.0	218
6	Superwetting Porous Materials for Wastewater Treatment: from Immiscible Oil/Water Mixture to Emulsion Separation. Advanced Materials Interfaces, 2017, 4, 1600029.	3.7	175
7	Mercury Ion Responsive Wettability and Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 13324-13329.	8.0	135
8	A Facile Solvent-Manipulated Mesh for Reversible Oil/Water Separation. ACS Applied Materials & Interfaces, 2014, 6, 12821-12826.	8.0	131
9	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Advances, 2013, 3, 23432.	3.6	130
10	One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 3333-3339.	8.0	117
11	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015, 11, 5551-5555.	10.0	104
12	In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO ₂ nanocluster-based mesh. Nanoscale, 2016, 8, 8525-8529.	5.6	103
13	Ultralight free-standing reduced graphene oxide membranes for oil-in-water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 20113-20117.	10.3	101
14	Straightforward Oxidation of a Copper Substrate Produces an Underwater Superoleophobic Mesh for Oil/Water Separation. ChemPhysChem, 2013, 14, 3489-3494.	2.1	91
15	Mussel-inspired chemistry and Stöber method for highly stabilized water-in-oil emulsions separation. Journal of Materials Chemistry A, 2014, 2, 20439-20443.	10.3	78
16	Breathing Demulsification: A Three-Dimensional (3D) Free-Standing Superhydrophilic Sponge. ACS Applied Materials & Interfaces, 2015, 7, 22264-22271.	8.0	73
17	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	3.3	72
18	The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter, 2011, 7, 2977.	2.7	67

Yingze Cao

#	Article	IF	CITATIONS
19	Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter, 2014, 10, 8116-8121.	2.7	67
20	One-Step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. ACS Applied Materials & Interfaces, 2015, 7, 8108-8113.	8.0	57
21	A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater. Applied Surface Science, 2018, 434, 57-62.	6.1	53
22	Electricity-induced switchable wettability and controllable water permeation based on 3D copper foam. Chemical Communications, 2015, 51, 16237-16240.	4.1	50
23	Magnetically Recoverable Efficient Demulsifier for Waterâ€inâ€Oil Emulsions. ChemPhysChem, 2015, 16, 595-600.	2.1	47
24	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	5.6	46
25	A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 2014, 4, 32544-32548.	3.6	44
26	Fabrication of a silica gel coated quartz fiber mesh for oil–water separation under strong acidic and concentrated salt conditions. RSC Advances, 2014, 4, 11447.	3.6	42
27	A novel solution-controlled hydrogel coated mesh for oil/water separation based on monolayer electrostatic self-assembly. RSC Advances, 2014, 4, 51404-51410.	3.6	36
28	Polyacrylamide-Polydivinylbenzene Decorated Membrane for Sundry Ionic Stabilized Emulsions Separation via a Facile Solvothermal Method. ACS Applied Materials & Interfaces, 2016, 8, 21816-21823.	8.0	28
29	Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments. Scientific Reports, 2016, 6, 32540.	3.3	28
30	Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020, 241, 116733.	7.9	25
31	A Facile Approach for Fabricating Dualâ€Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Waterâ€6oluble Proteins. Advanced Materials Interfaces, 2016, 3, 1600291.	3.7	24
32	Recycling of PE glove waste as highly valuable products for efficient separation of oil-based contaminants from water. Journal of Materials Chemistry A, 2016, 4, 18128-18133.	10.3	24
33	Multifunctional sulfate-assistant synthesis of seaweed-like N,S-doped carbons as high-performance anodes for K-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 9612-9620.	10.3	21
34	Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation. Membranes, 2021, 11, 1.	3.0	19
35	Mussel-inspired Ag nanoparticles anchored sponge for oil/water separation and contaminants catalytic reduction. Separation and Purification Technology, 2019, 225, 18-23.	7.9	18
36	Multi-applicable, durable superhydrophobic anti-icing coating through template-method and chemical vapor deposition. Surfaces and Interfaces, 2022, 32, 102100.	3.0	18

YINGZE CAO

#	Article	IF	CITATIONS
37	Synthesis of a Re-usable Cellobiase Enzyme Catalyst through In situ Encapsulation in Nonsurfactant Templated Sol–Gel Mesoporous Silica. Topics in Catalysis, 2012, 55, 1247-1253.	2.8	6
38	Mesoporous SiO ₂ -Supported Pt Nanoparticles for Catalytic Application. ISRN Nanomaterials, 2013, 2013, 1-7.	0.7	5
39	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. RSC Advances, 2016, 6, 86019-86024.	3.6	4
40	On the Electrical Resistance Relaxation of 3D-Anisotropic Carbon-Fiber-Filled Polymer Composites Subjected to External Electric Fields. Membranes, 2021, 11, 412.	3.0	2
41	Anisotropic Printed Resistor with Linear Sensitivity Based on Nano–Microfillerâ€Filled Polymer Composite. Advanced Electronic Materials, 2021, 7, 2100581.	5.1	2