
Michael T Wolfinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7624388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Landscape of transcription in human cells. Nature, 2012, 489, 101-108.	13.7	4,484
2	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	2.4	4,217
3	ViennaRNA Package 2.0. Algorithms for Molecular Biology, 2011, 6, 26.	0.3	3,719
4	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	13.7	1,444
5	Comparative analysis of the transcriptome across distant species. Nature, 2014, 512, 445-448.	13.7	289
6	RNA folding at elementary step resolution. Rna, 2000, 6, 325-338.	1.6	266
7	A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biology, 2014, 15, R34.	13.9	242
8	Partition function and base pairing probabilities of RNA heterodimers. Algorithms for Molecular Biology, 2006, 1, 3.	0.3	239
9	Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Science Translational Medicine, 2020, 12, .	5.8	203
10	Design of multistable RNA molecules. Rna, 2001, 7, 254-265.	1.6	138
11	Barrier Trees of Degenerate Landscapes. Zeitschrift Fur Physikalische Chemie, 2002, 216, .	1.4	130
12	Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Research, 1998, 26, 3825-3836.	6.5	115
13	Predicting RNA secondary structures from sequence and probing data. Methods, 2016, 103, 86-98.	1.9	110
14	Efficient computation of RNA folding dynamics. Journal of Physics A, 2004, 37, 4731-4741.	1.6	99
15	SHAPE directed RNA folding. Bioinformatics, 2016, 32, 145-147.	1.8	91
16	Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Research, 2018, 46, 1470-1485.	6.5	85
17	Folding Kinetics of Large RNAs. Journal of Molecular Biology, 2008, 379, 160-173.	2.0	77
18	AREsite2: an enhanced database for the comprehensive investigation of AU/GU/U-rich elements. Nucleic Acids Research, 2016, 44, D90-D95.	6.5	77

#	Article	IF	CITATIONS
19	Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammationÂresolution. Molecular Systems Biology, 2016, 12, 868.	3.2	74
20	TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics, 2014, 15, 89.	1.2	73
21	Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nature Communications, 2015, 6, 5903.	5.8	73
22	BarMap: RNA folding on dynamic energy landscapes. Rna, 2010, 16, 1308-1316.	1.6	53
23	Beyond energy minimization: approaches to the kinetic folding of RNA. Monatshefte Für Chemie, 2008, 139, 447-457.	0.9	49
24	Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 2016, 6, 34589.	1.6	47
25	Cross-regulation by CrcZ RNA controls anoxic biofilm formation in Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 39621.	1.6	45
26	The MazF-regulon: a toolbox for the post-transcriptional stress response in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 6660-6675.	6.5	45
27	NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations. Journal of the American Chemical Society, 2017, 139, 2647-2656.	6.6	43
28	Functional RNA Structures in the 3′UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses. Viruses, 2019, 11, 298.	1.5	43
29	RNASeq Based Transcriptional Profiling of Pseudomonas aeruginosa PA14 after Short- and Long-Term Anoxic Cultivation in Synthetic Cystic Fibrosis Sputum Medium. PLoS ONE, 2016, 11, e0147811.	1.1	42
30	General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in <i>Drosophila</i> Cells. Molecular and Cellular Biology, 2015, 35, 2309-2320.	1.1	41
31	Control of Cognate Sense mRNA Translation by cis-Natural Antisense RNAs. Plant Physiology, 2019, 180, 305-322.	2.3	41
32	2D Meets 4G: G-Quadruplexes in RNA Secondary Structure Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 832-844.	1.9	37
33	ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines. F1000Research, 2015, 4, 50.	0.8	33
34	Evolution of MicroRNAs. , 2006, 342, 335-350.		32
35	Updated Phylogeny of Chikungunya Virus Suggests Lineage-Specific RNA Architecture. Viruses, 2019, 11, 798.	1.5	32
36	RNA modifications in structure prediction – Status quo and future challenges. Methods, 2019, 156, 32-39.	1.9	31

#	Article	IF	CITATIONS
37	ViennaNGS: A toolbox for building efficient next- generation sequencing analysis pipelines. F1000Research, 2015, 4, 50.	0.8	31
38	Computational design of RNAs with complex energy landscapes. Biopolymers, 2013, 99, n/a-n/a.	1.2	27
39	Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Frontiers in Microbiology, 2018, 9, 2709.	1.5	27
40	The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Research, 2017, 45, 7938-7949.	6.5	24
41	Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biology, 2016, 17, 220.	3.8	20
42	Barrier Trees on Poset-Valued Landscapes. Genetic Programming and Evolvable Machines, 2003, 4, 7-20.	1.5	19
43	Exploring the lower part of discrete polymer model energy landscapes. Europhysics Letters, 2006, 74, 726-732.	0.7	19
44	Thermodynamic and Kinetic Folding of Riboswitches. Methods in Enzymology, 2015, 553, 193-213.	0.4	19
45	RNAblueprint: flexible multiple target nucleic acid sequence design. Bioinformatics, 2017, 33, 2850-2858.	1.8	17
46	RNA Structure Elements Conserved between Mouse and 59 Other Vertebrates. Genes, 2018, 9, 392.	1.0	16
47	Musashi binding elements in Zika and related Flavivirus 3′UTRs: A comparative study in silico. Scientific Reports, 2019, 9, 6911.	1.6	16
48	Distinctive Regulation of Carbapenem Susceptibility in Pseudomonas aeruginosa by Hfq. Frontiers in Microbiology, 2020, 11, 1001.	1.5	16
49	Gene Expression Profiling of Pseudomonas aeruginosa Upon Exposure to Colistin and Tobramycin. Frontiers in Microbiology, 2021, 12, 626715.	1.5	16
50	The Anaerobically Induced sRNA Pail Affects Denitrification in Pseudomonas aeruginosa PA14. Frontiers in Microbiology, 2017, 8, 2312.	1.5	14
51	In silico design of ligand triggered RNA switches. Methods, 2018, 143, 90-101.	1.9	14
52	Visualization of Barrier Tree Sequences. IEEE Transactions on Visualization and Computer Graphics, 2006, 12, 781-788.	2.9	13
53	RNA structure prediction: from 2D to 3D. Emerging Topics in Life Sciences, 2017, 1, 275-285.	1.1	13
54	Efficient computation of co-transcriptional RNA-ligand interaction dynamics. Methods, 2018, 143, 70-76.	1.9	13

#	Article	IF	CITATIONS
55	TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes. Genes, 2018, 9, 372.	1.0	12
56	Indications for a moonlighting function of translation factor aIF5A in the crenarchaeum Sulfolobus solfataricus. RNA Biology, 2019, 16, 675-685.	1.5	11
57	Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses, 2020, 12, 1017.	1.5	11
58	In Silico Evolution of Early Metabolism. Artificial Life, 2011, 17, 87-108.	1.0	10
59	Memory-efficient RNA energy landscape exploration. Bioinformatics, 2014, 30, 2584-2591.	1.8	10
60	Saddles and Barrier in Landscapes of Generalized Search Operators. Lecture Notes in Computer Science, 2007, , 194-212.	1.0	10
61	Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evolution, 2022, 8, .	2.2	10
62	Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats. Nucleic Acids Research, 2022, 50, 5881-5898.	6.5	8
63	A minimal and self-consistent in silico cell model based on macromolecular interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1831-1839.	1.8	7
64	Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes, 2021, 12, 239.	1.0	7
65	Rewiring of Gene Expression in Pseudomonas aeruginosa During Diauxic Growth Reveals an Indirect Regulation of the MexGHI-OpmD Efflux Pump by Hfq. Frontiers in Microbiology, 0, 13, .	1.5	5
66	Theoretical studies on RNA recognition by Musashi 1 RNA-binding protein. Scientific Reports, 2022, 12, .	1.6	5
67	An African tick flavivirus forming an independent clade exhibits unique exoribonuclease-resistant RNA structures in the genomic 3′-untranslated region. Scientific Reports, 2021, 11, 4883.	1.6	4
68	Functional RNA Structures in the $3\hat{\epsilon}^2$ UTR of Mosquito-Borne Flaviviruses. , 2021, , 65-100.		4
69	Computational Design of a Circular RNA with Prionlike Behavior. Artificial Life, 2016, 22, 172-184.	1.0	3
70	RNAxplorer: harnessing the power of guiding potentials to sample RNA landscapes. Bioinformatics, 2021, 37, 2126-2133.	1.8	3
71	Insights into the secondary and tertiary structure of the Bovine Viral Diarrhea Virus Internal Ribosome Entry Site. RNA Biology, 2022, 19, 496-506.	1.5	3
72	Visualization of Lattice-Based Protein Folding Simulations. , 0, , .		2

Visualization of Lattice-Based Protein Folding Simulations. , 0, , . 72

#	Article	IF	CITATIONS
73	On the Complexity of Reconstructing Chemical Reaction Networks. Mathematics in Computer Science, 2013, 7, 275-292.	0.2	2
74	Bi-alignments as Models of Incongruent Evolution of RNA Sequence and Secondary Structure. Lecture Notes in Computer Science, 2020, , 159-170.	1.0	2
75	Generic Context-Aware Group Contributions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 429-442.	1.9	1
76	Visualization of Barrier Tree Sequences Revisited. Mathematics and Visualization, 2008, , 275-290.	0.4	1
77	The role of Arbovirus genome untranslated regions on neurotropism. International Journal of Infectious Diseases, 2019, 79, 142.	1.5	0
78	Investigating Japanese encephalitis virus long-range terminal region interactions. Biophysical Journal, 2022, 121, 206a.	0.2	0
79	Investigating flaviviral genomic cyclization. Biophysical Journal, 2022, 121, 311a.	0.2	0