Yin Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7624273/publications.pdf

Version: 2024-02-01

		394286	330025
38	1,652	19	37
papers	citations	h-index	g-index
39	39	39	2362
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks. Journal of Physical Chemistry B, 2006, 110, 2988-2993.	1.2	264
2	Novel one-dimensional Bi ₂ O ₃ â€"Bi ₂ WO ₆ pâ€"n hierarchical heterojunction with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 8517-8524.	5.2	240
3	Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr(VI). Journal of Hazardous Materials, 2020, 381, 120942.	6.5	180
4	Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. Applied Catalysis B: Environmental, 2017, 203, 946-954.	10.8	132
5	Facile Fabrication of Bi ₁₂ O ₁₇ Br ₂ /Bi ₂₄ O ₃₁ Br ₁₀ Type II Heterostructures with High Visible Photocatalytic Activity. Journal of Physical Chemistry C, 2015, 119, 13032-13040.	1.5	100
6	Synthesis of one-dimensional WO ₃ â€"Bi ₂ WO ₆ heterojunctions with enhanced photocatalytic activity. CrystEngComm, 2015, 17, 569-576.	1.3	99
7	Fabrication of porous Cd-doped ZnO nanorods with enhanced photocatalytic activity and stability. CrystEngComm, 2013, 15, 6518.	1.3	67
8	Stable yellow ZnO mesocrystals with efficient visible-light photocatalytic activity. CrystEngComm, 2014, 16, 7906-7913.	1.3	60
9	Controlled synthesis of one-dimensional BiOBr with exposed (110) facets and enhanced photocatalytic activity. CrystEngComm, 2017, 19, 6473-6480.	1.3	60
10	Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities. CrystEngComm, 2015, 17, 3845-3851.	1.3	40
11	Br-Doped Bi ₂ O ₂ CO ₃ exposed (001) crystal facets with enhanced photocatalytic activity. CrystEngComm, 2017, 19, 5001-5007.	1.3	36
12	Synthesis, characterization and photocatalytic activity of Zn(OH)F hierarchical nanofibers prepared by a simple solution-based method. CrystEngComm, 2012, 14, 2812.	1.3	35
13	Synthesis of BiOI/Bi ₄ O ₅ I ₂ /Bi ₂ O ₂ CO ₃ p–n–pheterojunctions with superior photocatalytic activities. New Journal of Chemistry, 2015, 39, 8321-8328.	01.4	33
14	Synthesis of a novel one-dimensional BiOBr–Bi ₄ O ₅ Br ₂ heterostructure with a high quality interface and its enhanced visible-light photocatalytic activity. CrystEngComm, 2018, 20, 2292-2298.	1.3	33
15	Controllable synthesis and photoreduction performance towards Cr(<scp>vi</scp>) of BiOCl microrods with exposed (110) crystal facets. New Journal of Chemistry, 2018, 42, 16911-16918.	1.4	29
16	Synthesis of Bi ₂ O ₃ â€"Bi ₄ V ₂ O ₁₁ heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes. CrystEngComm, 2018, 20, 2553-2561.	1.3	26
17	Oxygen Vacancy Enhanced Photoreduction Cr(VI) on Few-Layers BiOBr Nanosheets. Catalysts, 2019, 9, 558.	1.6	25
18	Fabrication of one-dimensional Bi ₂ O ₃ â€"Bi ₁₄ MoO ₂₄ heterojunction photocatalysts with high interface quality. CrystEngComm, 2017, 19, 237-245.	1.3	20

#	Article	IF	Citations
19	One dimensional hierarchical BiOCl microrods: their synthesis and their photocatalytic performance. CrystEngComm, 2018, 20, 7809-7817.	1.3	20
20	Synthesis of one-dimensional Bi ₂ O ₃ â€"Bi ₅ O ₇ I heterojunctions with high interface quality. CrystEngComm, 2018, 20, 4771-4780.	1.3	20
21	Facile synthesis of size-tunable Cu39S28 micro/nano-crystals and small-sized configuration enhanced visible-light photocatalytic activity. CrystEngComm, 2013, 15, 5792.	1.3	15
22	Controlled-synthesis of ZnO nanorings. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 458-463.	0.4	14
23	Facet-selective interface design of a BiOl ₍₁₁₀₎ /Br-Bi ₂ O ₂ CO ₃₍₁₁₀₎ p–n heterojunction photocatalyst. CrystEngComm, 2017, 19, 6837-6844.	1.3	14
24	Synthesis of one-dimensional Bi ₂ O ₂ O\sub>3â€"Bi(OHC ₂ O ₄)·2H ₂ O heterojunctions with excellent adsorptive and photocatalytic performance. RSC Advances, 2016, 6, 42452-42460.	1.7	12
25	BiOCl Nanorings with Co-Exposed (110)/(001) Facets for Photocatalytic Degradation of Organic Dyes. ACS Applied Nano Materials, 2022, 5, 2476-2482.	2.4	12
26	Heterogeneous photocatalytic treatment of wastewater in ultraviolet light irradiationâé" photocatalyst Bi2WO6 microsphere with high repeatability. Frontiers of Optoelectronics, 2012, 5, 439-444.	1.9	9
27	Controlled synthesis of Bi ₂ O ₂ CO ₃ nanorods with enhanced photocatalytic performance. CrystEngComm, 2021, 23, 3671-3680.	1.3	9
28	Synthesis of a novel one-dimensional Bi ₂ O ₂ CO ₃ –BiOCl heterostructure and its enhanced photocatalytic activity. CrystEngComm, 2020, 22, 6822-6830.	1.3	8
29	Synthesis of a Novel 1D/2D Bi2O2CO3–BiOI Heterostructure and Its Enhanced Photocatalytic Activity. Catalysts, 2021, 11, 1284.	1.6	8
30	Unique 1D/2D Bi ₂ O ₂ CO ₃ nanorod-Bi ₂ WO ₆ nanosheet heterostructure: synthesis and photocatalytic performance. CrystEngComm, 2021, 23, 6128-6136.	1.3	7
31	Polymerâ€Controlled Growth of CuO Nanodiscs in the Mild Aqueous Solution. Chinese Journal of Chemistry, 2009, 27, 1086-1092.	2.6	6
32	Synthesis of Cd(OH) ₂ with Doughnut Microstructure and Its Controlled Growth Mechanism. Chinese Journal of Chemistry, 2009, 27, 295-298.	2.6	4
33	Controlled Synthesis of CdClOH Subâ€nanocones by Lowâ€temperature Solution Process and Their Transformation into CdS Hollow Subâ€nanocones. Chinese Journal of Chemistry, 2009, 27, 2178-2182.	2.6	4
34	Synthesis of Hollow-flower-ball-like Cd4(OH)5Cl3 Using Microwave Irradiation Method. Chinese Journal of Chemistry, 2010, 28, 1946-1950.	2.6	3
35	Defectâ€enhanced Photocatalytic Activity of ZnO Micro/nanostructures. Chinese Journal of Chemistry, 2013, 31, 1557-1563.	2.6	3
36	2D/1D Bi12O17Cl2/ \hat{l}^2 -Bi2O3 heterojunction photocatalysts with boosted photocatalytic performance. CrystEngComm, 2021, 23, 5190-5199.	1.3	2

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Doughnuts Like Cd(OH) ₂ Microstructure. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2008, 23, 1054-1058.	0.6	2
38	The first rare-earth fluoride one-dimensional nanostructures: template synthesis of LnF3 (Ln = Eu, La) nanotubes. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 76-79.	0.4	1