
## Hansjörg Scherberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762420/publications.pdf Version: 2024-02-01



HANSIÃ TOC SCHEDREDCED

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Distributed yet compartmentalized neural dynamics of hand actions. Neuron, 2022, 110, 10-11.                                                                                                              | 8.1 | Ο         |
| 2  | Reproducibility and efficiency in handling complex neurophysiological data. Neuroforum, 2021, .                                                                                                           | 0.3 | 3         |
| 3  | A Turntable Setup for Testing Visual and Tactile Grasping Movements in Non-human Primates.<br>Frontiers in Behavioral Neuroscience, 2021, 15, 648483.                                                     | 2.0 | 1         |
| 4  | Visually and Tactually Guided Grasps Lead to Different Neuronal Activity in Non-human Primates.<br>Frontiers in Neuroscience, 2021, 15, 679910.                                                           | 2.8 | 0         |
| 5  | PriMa: A low-cost, modular, open hardware, and 3D-printed fMRI manipulandum. NeuroImage, 2021, 238,<br>118218.                                                                                            | 4.2 | 0         |
| 6  | NFDI-Neuro: building a community for neuroscience research data management in Germany.<br>Neuroforum, 2021, .                                                                                             | 0.3 | 6         |
| 7  | A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power. Neuron, 2021, 109, 4050-4067.e12.                                                                | 8.1 | 80        |
| 8  | An Open Resource for Non-human Primate Optogenetics. Neuron, 2020, 108, 1075-1090.e6.                                                                                                                     | 8.1 | 79        |
| 9  | Histological assessment of optogenetic tools to study fronto-visual and fronto-parietal cortical networks in the rhesus macaque. Scientific Reports, 2020, 10, 11051.                                     | 3.3 | 6         |
| 10 | A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32124-32135. | 7.1 | 49        |
| 11 | Shared functional connectivity between the dorso-medial and dorso-ventral streams in macaques.<br>Scientific Reports, 2020, 10, 18610.                                                                    | 3.3 | 2         |
| 12 | 3D reconstruction toolbox for behavior tracked with multiple cameras. Journal of Open Source Software, 2020, 5, 1849.                                                                                     | 4.6 | 19        |
| 13 | Remotely releasable collar mechanism for medium-sized mammals: an affordable technology to avoid<br>multiple captures. Wildlife Biology, 2019, 2019, .                                                    | 1.4 | 7         |
| 14 | Population coding of grasp and laterality-related information in the macaque fronto-parietal network. Scientific Reports, 2018, 8, 1710.                                                                  | 3.3 | 31        |
| 15 | Reach and grasp deficits following damage to the dorsal pulvinar. Cortex, 2018, 99, 135-149.                                                                                                              | 2.4 | 22        |
| 16 | Neural Prostheses for Reaching and Grasping. , 2018, , .                                                                                                                                                  |     | 0         |
| 17 | Neural coding of intended and executed grasp force in macaque areas AIP, F5, and M1. Scientific Reports, 2018, 8, 17985.                                                                                  | 3.3 | 16        |
| 18 | Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.<br>Journal of Neuroscience, 2018, 38, 5759-5773.                                                            | 3.6 | 26        |

HansjĶrg Scherberger

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stirred, Not Shaken: Motor Control with Partially Mixed Selectivity. Neuron, 2017, 95, 479-481.                                                                                      | 8.1  | 2         |
| 20 | Object vision to hand action in macaque parietal, premotor, and motor cortices. ELife, 2016, 5, .                                                                                    | 6.0  | 85        |
| 21 | Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates. ELife, 2016, 5, .                                              | 6.0  | 53        |
| 22 | Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning. PLoS Computational Biology, 2016, 12, e1005175.                  | 3.2  | 128       |
| 23 | hebbRNN: A Reward-Modulated Hebbian Learning Rule for Recurrent Neural Networks. Journal of Open<br>Source Software, 2016, 1, 60.                                                    | 4.6  | 3         |
| 24 | Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study. Journal of Neural Engineering, 2015, 12, 056016.                 | 3.5  | 25        |
| 25 | Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP).<br>PLoS ONE, 2015, 10, e0142679.                                           | 2.5  | 8         |
| 26 | Decoding a Wide Range of Hand Configurations from Macaque Motor, Premotor, and Parietal<br>Cortices. Journal of Neuroscience, 2015, 35, 1068-1081.                                   | 3.6  | 147       |
| 27 | Visual Guidance in Control of Grasping. Annual Review of Neuroscience, 2015, 38, 69-86.                                                                                              | 10.7 | 61        |
| 28 | Musculoskeletal Representation of a Large Repertoire of Hand Grasping Actions in Primates. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23, 210-220. | 4.9  | 27        |
| 29 | Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.<br>Journal of Neuroscience, 2015, 35, 11415-11432.                               | 3.6  | 60        |
| 30 | Reach and Gaze Representations in Macaque Parietal and Premotor Grasp Areas. Journal of Neuroscience, 2013, 33, 7038-7049.                                                           | 3.6  | 125       |
| 31 | BCIs That Use Signals Recorded in Parietal or Premotor Cortex. , 2012, , 290-299.                                                                                                    |      | 0         |
| 32 | A new method of accurate hand- and arm-tracking for small primates. Journal of Neural Engineering, 2012, 9, 026025.                                                                  | 3.5  | 15        |
| 33 | Grasp Movement Decoding from Premotor and Parietal Cortex. Journal of Neuroscience, 2011, 31, 14386-14398.                                                                           | 3.6  | 74        |
| 34 | In search of more robust decoding algorithms for neural prostheses, a data driven approach. , 2010,<br>2010, 4172-5.                                                                 |      | 3         |
| 35 | Context-Specific Grasp Movement Representation in Macaque Ventral Premotor Cortex. Journal of Neuroscience, 2010, 30, 15175-15184.                                                   | 3.6  | 105       |
| 36 | Context-Specific Grasp Movement Representation in the Macaque Anterior Intraparietal Area. Journal of Neuroscience, 2009, 29, 6436-6448.                                             | 3.6  | 264       |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Neural control of motor prostheses. Current Opinion in Neurobiology, 2009, 19, 629-633.                                                                                           | 4.2  | 39        |
| 38 | Neural Prostheses for Reaching. , 2009, , 213-220.                                                                                                                                |      | 2         |
| 39 | Cortical Plasticity: A View from Nonhuman Primates. Neurodegenerative Diseases, 2007, 4, 34-42.                                                                                   | 1.4  | 2         |
| 40 | Target Selection Signals for Arm Reaching in the Posterior Parietal Cortex. Journal of Neuroscience, 2007, 27, 2001-2012.                                                         | 3.6  | 122       |
| 41 | Cortical Local Field Potential Encodes Movement Intentions in the Posterior Parietal Cortex. Neuron, 2005, 46, 347-354.                                                           | 8.1  | 394       |
| 42 | Cognitive Control Signals for Neural Prosthetics. Science, 2004, 305, 258-262.                                                                                                    | 12.6 | 642       |
| 43 | Recording advances for neural prosthetics. , 2004, 2004, 5352-5.                                                                                                                  |      | 15        |
| 44 | Magnetic resonance image-guided implantation of chronic recording electrodes in the macaque intraparietal sulcus. Journal of Neuroscience Methods, 2003, 130, 1-8.                | 2.5  | 43        |
| 45 | Target Selection for Reaching and Saccades Share a Similar Behavioral Reference Frame in the<br>Macaque. Journal of Neurophysiology, 2003, 89, 1456-1466.                         | 1.8  | 50        |
| 46 | Effect of light sleep on three-dimensional eye position in static roll and pitch. Vision Research, 2001, 41, 495-505.                                                             | 1.4  | 9         |
| 47 | Ocular Counterroll Modulates the Preferred Direction of Saccade-Related Pontine Burst Neurons in the Monkey. Journal of Neurophysiology, 2001, 86, 935-949.                       | 1.8  | 29        |
| 48 | Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. Journal of Comparative Neurology, 2001, 438, 318-335. | 1.6  | 132       |
| 49 | The collicular code of saccade direction depends on the roll orientation of the head relative to gravity. Experimental Brain Research, 1998, 120, 283-290.                        | 1.5  | 20        |