
Svetlana A Yashnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7623567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic properties and electronic structure of copper ions in Cu-ZSM-5. Catalysis Today, 2005, 110, 310-322.	4.4	110
2	Effect of Pt addition on sulfur dioxide and water vapor tolerance of Pd-Mn-hexaaluminate catalysts for high-temperature oxidation of methane. Applied Catalysis B: Environmental, 2017, 204, 89-106.	20.2	71
3	Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Applied Surface Science, 2004, 226, 88-93.	6.1	58
4	Cu-substituted ZSM-5 catalyst: Controlling of DeNO reactivity via ion-exchange mode with copper–ammonia solution. Applied Catalysis B: Environmental, 2015, 170-171, 241-254.	20.2	58
5	Hydrogen production through hydrocarbon fuel reforming processes over Ni based catalysts. Catalysis Today, 2019, 323, 166-182.	4.4	54
6	Cu-containing MFI zeolites as catalysts for wet peroxide oxidation of formic acid as model organic contaminant. Applied Catalysis B: Environmental, 2013, 140-141, 506-515.	20.2	47
7	Deep desulphurization of diesel fuels on bifunctional monolithic nanostructured Pt-zeolite catalysts. Catalysis Today, 2009, 144, 235-250.	4.4	39
8	Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+. Catalysis Today, 2012, 197, 214-227.	4.4	39
9	Synergetic effect of Pd addition on catalytic behavior of monolithic platinum–manganese–alumina catalysts for diesel vehicle emission control. Applied Catalysis B: Environmental, 2016, 185, 322-336.	20.2	32
10	High-temperature catalysts with a synergetic effect of Pd and manganese oxides. Catalysis Today, 2006, 117, 525-535.	4.4	27
11	Hydrogen production through autothermal reforming of CH4: Efficiency and action mode of noble (M) Tj ETQq1 1 catalysts. International Journal of Hydrogen Energy, 2020, 45, 33352-33369.	0.784314 7.1	rgBT /Ove 25
12	Density Functional Theory Molecular Cluster Study of Copper Interaction with Nitric Oxide Dimer in Cuâ^'ZSM-5 Catalysts. Journal of Physical Chemistry C, 2007, 111, 3080-3089.	3.1	22
13	Effect of the electronic state and copper localization in ZSM-5 pores on performance in NO selective catalytic reduction by propane. Applied Catalysis B: Environmental, 2011, 103, 1-10.	20.2	21
14	Development of Monolithic Catalysts with Low Noble Metal Content for Diesel Vehicle Emission Control. Topics in Catalysis, 2004, 30/31, 293-298.	2.8	20
15	Effect of Pd- precursor and support acid properties on the Pd electronic state and the hydrodesulfurization activity of Pd-zeolite catalysts. Catalysis Today, 2019, 323, 257-270.	4.4	19
16	Dependence of Synergetic Effect of Palladium–Manganese-Hexaaluminate Combustion Catalyst on Nature of Palladium Precursor. Topics in Catalysis, 2012, 55, 818-836.	2.8	17
17	Effect of Preparation Mode on the Properties of Mn-Na-W/SiO2 Catalysts for Oxidative Coupling of Methane: Conventional Methods vs. POSS Nanotechnology. Eurasian Chemico-Technological Journal, 2016, 18, 93.	0.6	16
18	Methane Oxidation by H2O2 over Different Cu-Species of Cu-ZSM-5 Catalysts. Topics in Catalysis, 2020, 63, 203-221.	2.8	15

Svetlana A Yashnik

#	Article	IF	CITATIONS
19	Synthesis gas production on glass cloth catalysts modified by Ni and Co oxides. Journal of Energy Chemistry, 2013, 22, 811-818.	12.9	11
20	The ammonia storage and ammonia species reactivity within Cu-ZSM-5 with different copper electronic states. Applied Catalysis A: General, 2021, 615, 118054.	4.3	11
21	Formic Acid Production Via Methane Peroxide Oxidation Over Oxalic Acid Activated Fe-MFI Catalysts. Topics in Catalysis, 2019, 62, 491-507.	2.8	9
22	Technology of methane combustion on granulated catalysts for environmentally friendly gas turbine power plants. Catalysis Today, 2010, 155, 35-44.	4.4	8
23	Effect of Glycine Addition on Physicochemical and Catalytic Properties of Mn, Mn–La and Mn–Ce Monolithic Catalysts Prepared by Solution Combustion Synthesis. Catalysis Letters, 2019, 149, 2535-2551.	2.6	8
24	Structured catalyst and combined reactor loading for methane combustion in a gas turbine power plant. Catalysis Today, 2009, 147, S237-S243.	4.4	7
25	Cu(II) oxo/hydroxides stabilized by ZSM-5 zeolite as an efficient and robust catalyst for chemical and photochemical water oxidation with Ru(bpy)33+. Catalysis Today, 2021, 375, 458-471.	4.4	5
26	Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6ÂG dye. Journal of Environmental Chemical Engineering, 2022, 10, 107950.	6.7	5
27	Atomic Structure of Pd-, Pt-, and PdPt-Based Catalysts of Total Oxidation of Methane: In Situ EXAFS Study. Catalysts, 2021, 11, 1446.	3.5	4
28	Co(II, III) Hydroxides Supported on Zeolite Acting as an Efficient and Robust Catalyst for Catalytic Water Oxidation with Ru(bpy)33+. Topics in Catalysis, 2019, 62, 439-455.	2.8	2
29	Effect of preparation modes on the properties of cobalt-containing honeycomb monolithic catalysts modified by rare-earth metal oxides. Materials Today Communications, 2021, 27, 102203.	1.9	2
30	Temperature effect on the physicochemical properties of χ-alumina interaction with CCl4. Catalysis for Sustainable Energy, 2017, 4, .	0.7	0