Jan Mathijs Schoffelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7623496/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phasic modulation of visual representations during sustained attention. European Journal of Neuroscience, 2022, 55, 3191-3208.	1.2	11
2	Lexical Frequency and Sentence Context Influence the Brain's Response to Single Words. Neurobiology of Language (Cambridge, Mass), 2022, 3, 149-179.	1.7	13
3	A unified view on beamformers for M/EEG source reconstruction. NeuroImage, 2022, 246, 118789.	2.1	50
4	Familiarity modulates neural tracking of sung and spoken utterances. NeuroImage, 2022, 252, 119049.	2.1	8
5	The Time Course of Language Production as Revealed by Pattern Classification of MEG Sensor Data. Journal of Neuroscience, 2022, 42, 5745-5754.	1.7	3
6	A 10-hour within-participant magnetoencephalography narrative dataset to test models of language comprehension. Scientific Data, 2022, 9, .	2.4	4
7	Supramodal Sentence Processing in the Human Brain: fMRI Evidence for the Influence of Syntactic Complexity in More Than 200 Participants. Neurobiology of Language (Cambridge, Mass), 2022, 3, 575-598.	1.7	7
8	Estimating the influence of stroke lesions on MEG source reconstruction. Neurolmage, 2022, 260, 119422.	2.1	4
9	Semantic and syntactic composition of minimal adjective-noun phrases in Dutch: An MEG study. Neuropsychologia, 2021, 155, 107754.	0.7	14
10	Alpha Oscillations Shape Sensory Representation and Perceptual Sensitivity. Journal of Neuroscience, 2021, 41, 9581-9592.	1.7	25
11	The Human Connectome Project: A retrospective. NeuroImage, 2021, 244, 118543.	2.1	114
12	Comparison of undirected frequency-domain connectivity measures for cerebro-peripheral analysis. Neurolmage, 2021, 245, 118660.	2.1	9
13	Investigating the effects of pre-stimulus cortical oscillatory activity on behavior. NeuroImage, 2020, 223, 117351.	2.1	1
14	Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature Neuroscience, 2020, 23, 1473-1483.	7.1	113
15	Comparison of beamformer implementations for MEG source localization. NeuroImage, 2020, 216, 116797.	2.1	48
16	Sensory Modality-Independent Activation of the Brain Network for Language. Journal of Neuroscience, 2020, 40, 2914-2924.	1.7	19
17	Are alpha oscillations instrumental in multisensory synchrony perception?. Brain Research, 2020, 1734, 146744.	1.1	21
18	The frequency gradient of human resting-state brain oscillations follows cortical hierarchies. ELife, 2020, 9, .	2.8	77

JAN MATHIJS SCHOFFELEN

#	Article	IF	CITATIONS
19	Dysregulated oscillatory connectivity in the visual system in autism spectrum disorder. Brain, 2019, 142, 3294-3305.	3.7	53
20	Low-Frequency Oscillations Code Speech during Verbal Working Memory. Journal of Neuroscience, 2019, 39, 6498-6512.	1.7	19
21	Frequency-specific brain dynamics related to prediction during language comprehension. NeuroImage, 2019, 198, 283-295.	2.1	38
22	A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data, 2019, 6, 17.	2.4	56
23	The Relation between Alpha/Beta Oscillations and the Encoding of Sentence induced Contextual Information. Scientific Reports, 2019, 9, 20255.	1.6	22
24	How the brain makes sense beyond the processing of single words – An MEG study. NeuroImage, 2019, 186, 586-594.	2.1	36
25	Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response. NeuroImage, 2019, 186, 703-712.	2.1	19
26	Studying Dynamic Neural Interactions with MEG. , 2019, , 519-541.		3
27	Studying Dynamic Neural Interactions with MEC. , 2019, , 1-23.		1
28	Ghost interactions in MEG/EEG source space: A note of caution on inter-areal coupling measures. Neurolmage, 2018, 173, 632-643.	2.1	220
29	Theta-band Oscillations in the Middle Temporal Gyrus Reflect Novel Word Consolidation. Journal of Cognitive Neuroscience, 2018, 30, 621-633.	1.1	28
30	FieldTrip Made Easy: An Analysis Protocol for Group Analysis of the Auditory Steady State Brain Response in Time, Frequency, and Space. Frontiers in Neuroscience, 2018, 12, 711.	1.4	54
31	Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. NeuroImage, 2018, 178, 277-286.	2.1	27
32	Stimulus Familiarity and Expectation Jointly Modulate Neural Activity in the Visual Ventral Stream. Journal of Cognitive Neuroscience, 2018, 30, 1366-1377.	1.1	33
33	Assessing the utility of frequency tagging for tracking memory-based reactivation of word representations. Scientific Reports, 2018, 8, 7897.	1.6	8
34	Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production. NeuroImage, 2018, 179, 326-336.	2.1	18
35	Integrated analysis of anatomical and electrophysiological human intracranial data. Nature Protocols, 2018, 13, 1699-1723.	5.5	130
36	Robust neuronal oscillatory entrainment to speech displays individual variation in lateralisation. Language, Cognition and Neuroscience, 2018, 33, 943-954.	0.7	11

#	Article	IF	CITATIONS
37	MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data, 2018, 5, 180110.	2.4	101
38	Control adjustments in speaking: Electrophysiology of the Gratton effect in picture naming. Cortex, 2017, 92, 289-303.	1.1	21
39	Frequency-specific directed interactions in the human brain network for language. Proceedings of the United States of America, 2017, 114, 8083-8088.	3.3	105
40	Discourse-level semantic coherence influences beta oscillatory dynamics and the N400 during sentence comprehension. Language, Cognition and Neuroscience, 2017, 32, 601-617.	0.7	21
41	A Predictive Coding Perspective on Beta Oscillations during Sentence-Level Language Comprehension. Frontiers in Human Neuroscience, 2016, 10, 85.	1.0	76
42	Using Brain Potentials to Functionally Localise Stroop-Like Effects in Colour and Picture Naming: Perceptual Encoding versus Word Planning. PLoS ONE, 2016, 11, e0161052.	1.1	12
43	Gender agreement violations modulate beta oscillatory dynamics during sentence comprehension: A comparison of second language learners and native speakers. Neuropsychologia, 2016, 89, 254-272.	0.7	25
44	Hippocampal-Prefrontal Theta Oscillations Support Memory Integration. Current Biology, 2016, 26, 450-457.	1.8	219
45	Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas. Neuron, 2016, 89, 384-397.	3.8	582
46	Neural activity during sentence processing as reflected in theta, alpha, beta, and gamma oscillations. NeuroImage, 2016, 142, 43-54.	2.1	109
47	Temporal Expectation and Attention Jointly Modulate Auditory Oscillatory Activity in the Beta Band. PLoS ONE, 2015, 10, e0120288.	1.1	74
48	Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band. PLoS ONE, 2015, 10, e0138685.	1.1	24
49	Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron, 2015, 85, 390-401.	3.8	1,036
50	A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Frontiers in Systems Neuroscience, 2015, 9, 175.	1.2	820
51	Distinct Patterns of Brain Activity Characterise Lexical Activation and Competition in Spoken Word Production. PLoS ONE, 2014, 9, e88674.	1.1	85
52	Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex. PLoS Biology, 2014, 12, e1001965.	2.6	175
53	Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18183-18188.	3.3	73

54 Studying Dynamic Neural Interactions with MEG. , 2014, , 405-427.

JAN MATHIJS SCHOFFELEN

#	Article	IF	CITATIONS
55	Metacognitive awareness of covert somatosensory attention corresponds to contralateral alpha power. Neurolmage, 2014, 85, 803-809.	2.1	27
56	Dissociated α-Band Modulations in the Dorsal and Ventral Visual Pathways in Visuospatial Attention and Perception. Cerebral Cortex, 2014, 24, 550-561.	1.6	112
57	Termination of ongoing spike-wave discharges investigated by cortico–thalamic network analyses. Neurobiology of Disease, 2014, 70, 127-137.	2.1	28
58	Investigating causality between interacting brain areas with multivariate autoregressive models of MEG sensor data. Human Brain Mapping, 2013, 34, 890-913.	1.9	21
59	Peri-ictal network dynamics of spike-wave discharges: Phase and spectral characteristics. Experimental Neurology, 2013, 239, 235-247.	2.0	44
60	Online and offline tools for head movement compensation in MEG. NeuroImage, 2013, 68, 39-48.	2.1	205
61	Good practice for conducting and reporting MEG research. NeuroImage, 2013, 65, 349-363.	2.1	604
62	Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14574-14579.	3.3	48
63	Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas. Neuron, 2012, 75, 875-888.	3.8	665
64	Beta oscillations relate to the N400m during language comprehension. Human Brain Mapping, 2012, 33, 2898-2912.	1.9	131
65	The Dynamic Beamformer. Lecture Notes in Computer Science, 2012, , 148-155.	1.0	1
66	FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 2011, 1-9.	1.1	7,466
67	Spatiotemporal smoothing of single trial MEG data. Journal of Neuroscience Methods, 2011, 200, 219-228.	1.3	2
68	Improving the interpretability of allâ€ŧoâ€all pairwise source connectivity analysis in MEG with nonhomogeneous smoothing. Human Brain Mapping, 2011, 32, 426-437.	1.9	16
69	Selective Movement Preparation Is Subserved by Selective Increases in Corticomuscular Gamma-Band Coherence. Journal of Neuroscience, 2011, 31, 6750-6758.	1.7	93
70	Corticospinal Beta-Band Synchronization Entails Rhythmic Gain Modulation. Journal of Neuroscience, 2010, 30, 4481-4488.	1.7	105
71	Visually induced gamma-band activity predicts speed of change detection in humans. NeuroImage, 2010, 51, 1162-1167.	2.1	86
72	Source connectivity analysis with MEG and EEG. Human Brain Mapping, 2009, 30, 1857-1865.	1.9	820

JAN MATHIJS SCHOFFELEN

#	Article	IF	CITATIONS
73	Functional integration within the human pain system as revealed by Granger causality. Human Brain Mapping, 2009, 30, 4025-4032.	1.9	37
74	Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability. Journal of Neuroscience, 2008, 28, 1816-1823.	1.7	740
75	Imaging the human motor system's beta-band synchronization during isometric contraction. NeuroImage, 2008, 41, 437-447.	2.1	96
76	Oscillatory Activity in Human Parietal and Occipital Cortex Shows Hemispheric Lateralization and Memory Effects in a Delayed Double-Step Saccade Task. Cerebral Cortex, 2007, 17, 2364-2374.	1.6	149
77	Modulation of Neuronal Interactions Through Neuronal Synchronization. Science, 2007, 316, 1609-1612.	6.0	1,197
78	Parieto-occipital sources account for the increase in alpha activity with working memory load. Human Brain Mapping, 2007, 28, 785-792.	1.9	284
79	Comparing spectra and coherences for groups of unequal size. Journal of Neuroscience Methods, 2007, 159, 337-345.	1.3	143
80	Nonparametric statistical testing of coherence differences. Journal of Neuroscience Methods, 2007, 163, 161-175.	1.3	246
81	Localizing human visual gamma-band activity in frequency, time and space. NeuroImage, 2006, 29, 764-773.	2.1	439
82	Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction. Science, 2005, 308, 111-113.	6.0	460
83	Steady-state visual evoked potentials in the low frequency range in migraine: a study of habituation and variability phenomena. International Journal of Psychophysiology, 2003, 49, 165-174.	0.5	25