J-F Le Meins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7623059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple method to achieve high doxorubicin loading in biodegradable polymersomes. Journal of Controlled Release, 2010, 147, 428-435.	9.9	317

The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(\hat{l}^3 -benzyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td 11.4

3	Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cement and Concrete Research, 2008, 38, 1197-1209.	11.0	205
4	Biomimetic Doxorubicin Loaded Polymersomes from Hyaluronan- <i>block</i> -Poly(γ-benzyl glutamate) Copolymers. Biomacromolecules, 2009, 10, 2802-2808.	5.4	195
5	Recent trends in the tuning of polymersomes' membrane properties. European Physical Journal E, 2011, 34, 14.	1.6	195
6	Hybrid polymer/lipid vesicles: state of the art and future perspectives. Materials Today, 2013, 16, 397-402.	14.2	187
7	Biocompatible and Biodegradable Poly(trimethylene carbonate)- <i>b</i> -Poly(<scp>l</scp> -glutamic) Tj ETQq1 1	0,784314 3.5	4 rgBT /Ove 162
8	Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane. Soft Matter, 2012, 8, 2867.	2.7	115
9	Mastering a Double Emulsion in a Simple Co-Flow Microfluidic to Generate Complex Polymersomes. Langmuir, 2011, 27, 9034-9042.	3.5	98
10	Polymersome Shape Transformation at the Nanoscale. ACS Nano, 2013, 7, 9298-9311.	14.6	96
11	The in vivo behavior and antitumor activity of doxorubicin-loaded poly(γ-benzyl) Tj ETQq1 1 0.784314 rgBT /Ove Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 71-80.	rlock 10 T 3.3	f 50 347 Td 80
12	Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polymer Degradation and Stability, 2006, 91, 726-732.	5.8	78
13	Original diols from sunflower and ricin oils: Synthesis, characterization, and use as polyurethane building blocks. Journal of Polymer Science Part A, 2012, 50, 1766-1782.	2.3	77
14	Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. Langmuir, 2017, 33, 1705-1715.	3.5	75
15	In vitro and In vivo Evaluation of Docetaxel Loaded Biodegradable Polymersomes. Macromolecular Bioscience, 2010, 10, 503-512.	4.1	70
16	Temperature responsive poly(trimethylene carbonate)-block-poly(l-glutamic acid) copolymer: polymersomes fusion and fission. Soft Matter, 2010, 6, 1722.	2.7	70
17	Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles. ACS Macro Letters, 2015, 4, 182-186.	4.8	69
18	Microstructural characterisation and behaviour in different salt solutions of sodium polymethacrylate-g-PEO comb copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 173-182.	4.7	68

J-F LE MEINS

#	Article	IF	CITATIONS
19	Block Copolymer Vesicle Permeability Measured by Osmotic Swelling and Shrinking. Langmuir, 2011, 27, 4884-4890.	3.5	61
20	Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). Soft Matter, 2017, 13, 627-637.	2.7	57
21	Suspensions of monodisperse spheres in polymer melts: particle size effects in extensional flow. Rheologica Acta, 2003, 42, 184-190.	2.4	49
22	Asymmetric Hybrid Polymer–Lipid Giant Vesicles as Cell Membrane Mimics. Advanced Science, 2018, 5, 1700453.	11.2	45
23	Self-Assembling Peptide—Polymer Nano-Objects <i>via</i> Polymerization-Induced Self-Assembly. Macromolecules, 2020, 53, 7034-7043.	4.8	28
24	Shear-Induced Phase Separation in an Associating Polymer Solution. Macromolecules, 2001, 34, 2641-2647.	4.8	27
25	Large and Giant Unilamellar Vesicle(s) Obtained by Self-Assembly of Poly(dimethylsiloxane)-b-poly(ethylene oxide) Diblock Copolymers, Membrane Properties and Preliminary Investigation of Their Ability to Form Hybrid Polymer/Lipid Vesicles. Polymers, 2019, 11, 2013.	4.5	27
26	Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2013, 49, 182-190.	2.1	22
27	The combination of block copolymers and phospholipids to form giant hybrid unilamellar vesicles (CHUVs) does not systematically lead to "intermediate―membrane properties. Soft Matter, 2018, 14, 6476-6484.	2.7	20
28	Insights into <scp>C</scp> arbopol gel formulations: Microscopy analysis of the microstructure and the influence of polyol additives. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
29	Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers, 2020, 12, 637.	4.5	15
30	Soft dynamic covalent hydrogels based on iron(<scp>iii</scp>)tetraphenylporphyrinato-functionalized 4-arm poly(ethylene oxide). Polymer Chemistry, 2013, 4, 458-461.	3.9	11
31	Membrane reinforcement in giant hybrid polymer lipid vesicles achieved by controlling the polymer architecture. Soft Matter, 2021, 17, 83-89.	2.7	11
32	Nanogels Based on Poly(vinyl acetate) for the Preparation of Patterned Porous Films. Langmuir, 2011, 27, 4290-4295.	3.5	9
33	Large hybrid Polymer/Lipid Unilamellar vesicle (LHUV) at the nanoscale: An insight into the lipid distribution in the membrane and permeability control. Journal of Colloid and Interface Science, 2021, 604, 575-583.	9.4	8
34	Hybrid Block Copolymers Incorporating Oligosasaccharides and D Synthetic Blocks Grown by Controlled Radical Polymerization. ACS Symposium Series, 2009, , 231-240.	0.5	7
35	Obtention of Giant Unilamellar Hybrid Vesicles by Electroformation and Measurement of their Mechanical Properties by Micropipette Aspiration. Journal of Visualized Experiments, 2020, ,	0.3	5
36	Organogels from trehalose difatty ester amphiphiles. Soft Matter, 2019, 15, 956-962.	2.7	4

J-F LE MEINS

#	Article	IF	CITATIONS
37	Morphological Changes Induced by Addition of Polystyrene to Dextranâ€Polystyrene Block Copolymer Solutions. Macromolecular Symposia, 2009, 281, 113-118.	0.7	3
38	Hybrid polymer/lipid vesicles: Influence of polymer architecture and molar mass on line tension. Biophysical Journal, 2022, 121, 61-67.	0.5	3
39	Tear of lipid membranes by nanoparticles. Soft Matter, 2022, 18, 3318-3322.	2.7	3
40	Bio-Based Polyricinoleate and Polyhydroxystearate: Properties and Evaluation as Viscosity Modifiers for Lubricants. ACS Applied Polymer Materials, 2021, 3, 811-818.	4.4	2