
Antony van der Ent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Plant Ecology of Tropical Ultramafic Ecosystems. Botanical Review, The, 2023, 89, 115-157.	1.7	9
2	Nickel hyperaccumulation, elemental profiles and agromining potential of three species of <i>Odontarrhena</i> from the ultramafics of Western Iran. International Journal of Phytoremediation, 2023, 25, 381-392.	1.7	1
3	Biogeochemical cycling of nickel and nutrients in a naturalÂhigh-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia. Chemoecology, 2022, 32, 15-29.	0.6	1
4	In Situ Analysis of Nickel Uptake from Foliar Application in Pecan Using Instrumental µXRF Analysis. Journal of Soil Science and Plant Nutrition, 2022, 22, 1-9.	1.7	7
5	Manganese accumulation and tissue-level distribution in Australian Macadamia (Proteaceae) species. Environmental and Experimental Botany, 2022, 193, 104668.	2.0	6
6	The â€~europium anomaly' in plants: facts and fiction. Plant and Soil, 2022, 476, 721-728.	1.8	14
7	Fate of nickel in soybean seeds dressed with different forms of nickel. Rhizosphere, 2022, 21, 100464.	1.4	5
8	Manganese Accumulation and Tissue-level Distribution in the Australian Hyperaccumulator Gossia Bidwillii (Myrtaceae). Tropical Plant Biology, 2022, 15, 1-11.	1.0	4
9	Contrasting patterns of nickel distribution in the hyperaccumulators <i>Phyllanthus balgooyi</i> and <i>Phyllanthus rufuschaneyi</i> from Malaysian Borneo. Metallomics, 2022, 14, .	1.0	0
10	Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rain forest in New Caledonia. Forest Ecology and Management, 2022, 509, 120049.	1.4	4
11	Contrasting nickel and manganese accumulation and localization in New Caledonian Cunoniaceae. Plant and Soil, 2022, 475, 515-534.	1.8	3
12	Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. Journal of Geochemical Exploration, 2022, 237, 106985.	1.5	1
13	Farming for battery metals. Science of the Total Environment, 2022, 827, 154092.	3.9	15
14	High natural bromine concentrations in organic Brazil Nuts from Bolivia. Journal of Food Composition and Analysis, 2022, 110, 104533.	1.9	1
15	Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 2022, 24, 1141-1151.	1.7	5
16	Assessment of plant diversity and foliar chemistry on the Sri Lankan ultramafics reveals inconsistencies in the metal hyperaccumulator trait. Ecological Research, 2022, 37, 215-227.	0.7	2
17	Multimodal synchrotron X-ray fluorescence imaging reveals elemental distribution in seeds and seedlings of the Zn–Cd–Ni hyperaccumulator <i>Noccaea caerulescens</i> . Metallomics, 2022, 14, .	1.0	5
18	Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Minerals Engineering, 2022, 182, 107537.	1.8	38

#	Article	IF	CITATIONS
19	Comprehensive insights in thallium ecophysiology in the hyperaccumulator Biscutella laevigata. Science of the Total Environment, 2022, 838, 155899.	3.9	9
20	Cellular-level distribution of manganese in <i>Macadamia integrifolia, M. ternifolia</i> , and <i>M. ternifolia</i> from Australia. Metallomics, 2022, 14, .	1.0	2
21	Nickel distribution in. Australian Journal of Botany, 2022, 70, 304-310.	0.3	1
22	Thallium accumulation and distribution in Silene latifolia (Caryophyllaceae) grown in hydroponics. Plant and Soil, 2022, 480, 213-226.	1.8	6
23	Proof-of-concept of polymetallic phyto-extraction of base metal mine tailings from Queensland, Australia. Plant and Soil, 2022, 480, 349-367.	1.8	1
24	The biogeochemistry of copper metallophytes in the Roseby Corridor (North-West Queensland,) Tj ETQq0 0 0 rg	gBT /Overlo 0.6	ock ₃ 10 Tf 50 5
25	Treasure from trash: Mining critical metals from waste and unconventional sources. Science of the Total Environment, 2021, 758, 143673.	3.9	9
26	Bacterial community diversity and functional roles in the rhizosphere of Rinorea cf. bengalensis and Phyllanthus rufuschaneyi under a nickel concentration gradient. Plant and Soil, 2021, 459, 343-355.	1.8	4
27	Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. Jom, 2021, 73, 39-53.	0.9	16
28	Variation in rare earth element (REE), aluminium (Al) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. Plant and Soil, 2021, 461, 565-578.	1.8	18
29	Root foraging and selenium uptake in the Australian hyperaccumulator Neptunia amplexicaulis and nonâ€accumulator Neptunia gracilis. Plant and Soil, 2021, 462, 219-233.	1.8	9
30	Rare earth elements, aluminium and silicon distribution in the fern <i>Dicranopteris linearis</i> revealed by μPIXE Maia analysis. Annals of Botany, 2021, 128, 17-30.	1.4	12
31	The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. International Journal of Phytoremediation, 2021, 23, 1157-1168.	1.7	5
32	Blepharidium guatemalense, an obligate nickel hyperaccumulator plant from non-ultramafic soils in Mexico. Chemoecology, 2021, 31, 169-187.	0.6	6
33	Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt, and zinc in the genus <i>Gossia</i> (Myrtaceae). Metallomics, 2021, 13, .	1.0	23
34	Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator <i>Noccaea caerulescens</i> (Brassicaceae). Metallomics, 2021, 13, .	1.0	3
35	Manganese (hyper)accumulation within Australian Denhamia (Celastraceae): an assessment of the trait and manganese accumulation under controlled conditions. Plant and Soil, 2021, 463, 205-223.	1.8	13
36	Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology, 2021, 31, 335-342.	0.6	7

#	Article	IF	CITATIONS
37	Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant and Soil, 2021, 464, 375-389.	1.8	7
38	ls the aquatic macrophyte Crassula helmsii a genuine copper hyperaccumulator?. Plant and Soil, 2021, 464, 359.	1.8	7
39	Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. Plant and Soil, 2021, 465, 83-95.	1.8	8
40	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. Journal of Experimental Botany, 2021, 72, 5079-5092.	2.4	15
41	Variation in the ionome of tropical â€~metal crops' in response to soil potassium availability. Plant and Soil, 2021, 465, 185-195.	1.8	3
42	Root responses to localised soil arsenic enrichment in the fern Pityrogramma calomelanos var. austroamericana grown in rhizoboxes. Plant Physiology and Biochemistry, 2021, 164, 147-159.	2.8	4
43	Contrasting phosphorus (P) accumulation in response to soil P availability in â€~metal crops' from P-impoverished soils. Plant and Soil, 2021, 467, 155-164.	1.8	5
44	Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. Plant Methods, 2021, 17, 86.	1.9	6
45	Intensive cycling of nickel in a New Caledonian forest dominated by hyperaccumulator trees. Plant Journal, 2021, 107, 1040-1055.	2.8	6
46	lsotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC Plant Biology, 2021, 21, 437.	1.6	2
47	Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere, 2021, 282, 131096.	4.2	30
48	Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants. Mineral Resource Reviews, 2021, , 197-214.	1.5	4
49	Element Case Studies: Nickel (Tropical Regions). Mineral Resource Reviews, 2021, , 365-383.	1.5	6
50	Global Distribution and Ecology of Hyperaccumulator Plants. Mineral Resource Reviews, 2021, , 133-154.	1.5	15
51	Fluoride hyperaccumulation in Gastrolobium species (Fabaceae) from Western Australia. Australian Journal of Botany, 2021, 69, 516.	0.3	2
52	Tools for the Discovery of Hyperaccumulator Plant Species in the Field and in the Herbarium. Mineral Resource Reviews, 2021, , 183-195.	1.5	11
53	Exceptional Uptake and Accumulation of Chemical Elements in Plants: Extending the Hyperaccumulation Paradigm. Mineral Resource Reviews, 2021, , 99-131.	1.5	14
54	Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. Frontiers in Plant Science, 2021, 12, 778275.	1.7	22

#	Article	IF	CITATIONS
55	Geochemical cycles of arsenic in historic tin tailings from multiple ore sources: an example from Australia. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
56	Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 2020, 254, 109798.	3.8	42
57	A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology, 2020, 30, 1-13.	0.6	29
58	X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant and Soil, 2020, 448, 15-36.	1.8	11
59	Confocal Volumetric μXRF and Fluorescence Computed μ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact <i>Pteris vittata</i> Fronds. Environmental Science & Technology, 2020, 54, 745-757.	4.6	19
60	Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo – an adaptation to metalliferous sites in metal-tolerant <i>Biscutella laevigata</i> . Metallomics, 2020, 12, 42-53.	1.0	9
61	Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Annals of Botany, 2020, 125, 599-610.	1.4	32
62	Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. Plant and Soil, 2020, 457, 293-320.	1.8	5
63	Letter to the editor of Chemosphere regarding Xu etÂal. (2020). Chemosphere, 2020, 260, 128050.	4.2	0
64	A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Botanical Journal of the Linnean Society, 2020, 194, 1-22.	0.8	40
65	Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo. Plant and Soil, 2020, 454, 225-243.	1.8	11
66	Novel Insights Into the Hyperaccumulation Syndrome in Pycnandra (Sapotaceae). Frontiers in Plant Science, 2020, 11, 559059.	1.7	3
67	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environmental Science & Technology, 2020, 54, 12072-12080.	4.6	46
68	Synchrotron µXRF imaging of live seedlings of Berkheya coddii and Odontarrhena muralis during germination and seedling growth. Plant and Soil, 2020, 453, 487-501.	1.8	9
69	Cobalt hyperaccumulation in Rinorea cf. bengalensis (Violaceae) from Sabah: accumulation potential and tissue and cellular-level distribution of cobalt. Plant and Soil, 2020, 455, 289-303.	1.8	9
70	Uptake, translocation and accumulation of nickel and cobalt in <i>Berkheya coddii</i> , a â€~metal crop' from South Africa. Metallomics, 2020, 12, 1278-1289.	1.0	19
71	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environmental Microbiology, 2020, 22, 1649-1665.	1.8	14
72	Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 2020, 449, 11-37.	1.8	66

#	Article	IF	CITATIONS
73	Distribution of aluminium in hydrated leaves of tea (<i>Camellia sinensis</i>) using synchrotron- and laboratory-based X-ray fluorescence microscopy. Metallomics, 2020, 12, 1062-1069.	1.0	3
74	Phytometallomics. Metallomics, 2020, 12, 324-325.	1.0	2
75	Frequency distribution of foliar nickel is bimodal in the ultramafic flora of Kinabalu Park (Sabah,) Tj ETQq1 1 0.7	′84314 rgB 1.4	BT /Qverlock 10
76	Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus. Annals of Botany, 2020, 126, 905-914.	1.4	9
77	Distribution and chemical form of selenium in <i>Neptunia amplexicaulis</i> from Central Queensland, Australia. Metallomics, 2020, 12, 514-527.	1.0	23
78	Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill. in response to solution pH variation in hydroponic culture. Plant Physiology and Biochemistry, 2020, 148, 133-141.	2.8	13
79	Methods to Visualize Elements in Plants. Plant Physiology, 2020, 182, 1869-1882.	2.3	40
80	Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern <i>Dicranopteris linearis</i> from China. Environmental Science & Technology, 2020, 54, 2287-2294.	4.6	31
81	Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to manganese toxicity in soybean and sunflower. Annals of Botany, 2020, 126, 331-341.	1.4	12
82	Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia. Metallomics, 2020, 12, 682-701.	1.0	23
83	Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. Plant and Soil, 2020, 450, 287-302.	1.8	22
84	Convergent patterns of tissue-level distribution of elements in different tropical woody nickel hyperaccumulator species from Borneo Island. AoB PLANTS, 2020, 12, plaa058.	1.2	3
85	Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining â€~metal crops'. Plant and Soil, 2019, 443, 27-39.	1.8	19
86	Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical <i>Psychotria</i> . American Journal of Botany, 2019, 106, 1377-1385.	0.8	25
87	Abnormal concentrations of Cu–Co in <i>Haumaniastrum katangense</i> , <i>Haumaniastrum robertii</i> and <i>Aeolanthus biformifolius</i> : contamination or hyperaccumulation?. Metallomics, 2019, 11, 586-596.	1.0	17
88	Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia). Plant and Soil, 2019, 436, 543-563.	1.8	10
89	Growth effects in tropical nickelâ€agromining â€~metal crops' in response toÂnutrient dosing. Journal of Plant Nutrition and Soil Science, 2019, 182, 715-728.	1.1	17
90	PIXE imaging of hyperaccumulator plants using the Maia detector array. Nuclear Instruments & Methods in Physics Research B, 2019, 451, 73-78.	0.6	6

#	Article	IF	CITATIONS
91	Scandium biogeochemistry at the ultramafic Lucknow deposit, Queensland, Australia. Journal of Geochemical Exploration, 2019, 204, 74-82.	1.5	6
92	Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia). Plant and Soil, 2019, 440, 201-218.	1.8	2
93	Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. Journal of Geochemical Exploration, 2019, 202, 113-127.	1.5	16
94	Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 2019, 202, 49-58.	1.5	48
95	X-Ray Fluorescence Ionomics of Herbarium Collections. Scientific Reports, 2019, 9, 4746.	1.6	52
96	Soil amendments affecting nickel uptake and growth performance of tropical â€~metal crops' used for agromining. Journal of Geochemical Exploration, 2019, 203, 78-86.	1.5	22
97	Absorption of foliar-applied Zn in sunflower (<i>Helianthus annuus</i>): importance of the cuticle, stomata and trichomes. Annals of Botany, 2019, 123, 57-68.	1.4	81
98	Co-deposition of silicon with rare earth elements (REEs) and aluminium in the fern Dicranopteris linearis from China. Plant and Soil, 2019, 437, 427-437.	1.8	26
99	Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentinite dump site. Journal of Geochemical Exploration, 2019, 200, 139-151.	1.5	10
100	Spatially-resolved localization and chemical speciation of nickel and zinc in <i>Noccaea tymphaea</i> and <i>Bornmuellera emarginata</i> . Metallomics, 2019, 11, 2052-2065.	1.0	12
101	The first tropical â€~metal farm': Some perspectives from field and pot experiments. Journal of Geochemical Exploration, 2019, 198, 114-122.	1.5	45
102	Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 2019, 196, 235-246.	1.5	20
103	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia). Applied Soil Ecology, 2019, 133, 70-80.	2.1	17
104	Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecological Research, 2018, 33, 659-674.	0.7	31
105	The discovery of nickel hyperaccumulation in the New Caledonian tree <i>Pycnandra acuminata</i> 40 years on: an introduction to a Virtual Issue. New Phytologist, 2018, 218, 397-400.	3.5	27
106	Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant and Soil, 2018, 423, 1-11.	1.8	67
107	Nickel hyperaccumulation in <i>Antidesma montis</i> â€ <i>silam</i> : from herbarium discovery to collection in the native habitat. Ecological Research, 2018, 33, 675-685.	0.7	41
108	Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. , 2018, 59, 9.		32

7

#	Article	IF	CITATIONS
109	Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. Environmental Geochemistry and Health, 2018, 40, 189-207.	1.8	17
110	Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 2018, 160, 154-169.	2.2	50
111	Xâ€ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytologist, 2018, 218, 432-452.	3.5	104
112	Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environmental and Experimental Botany, 2018, 147, 1-12.	2.0	35
113	Global Distribution and Ecology of Hyperaccumulator Plants. Mineral Resource Reviews, 2018, , 75-92.	1.5	27
114	Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. Mineral Resource Reviews, 2018, , 117-133.	1.5	21
115	A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 2018, 218, 407-411.	3.5	470
116	The Maia Detector and Event Mode. Synchrotron Radiation News, 2018, 31, 21-27.	0.2	24
117	Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. Environmental Science & Technology, 2018, 52, 11980-11994.	4.6	180
118	A global forum on ultramafic ecosystems: from ultramafic ecology to rehabilitation of degraded environments. Ecological Research, 2018, 33, 517-522.	0.7	2
119	Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Scientific Reports, 2018, 8, 9659.	1.6	37
120	Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. Scientific Reports, 2018, 8, 9683.	1.6	42
121	Corrigendum to: Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Australian Journal of Botany, 2018, 66, 286.	0.3	0
122	Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. Environmental Monitoring and Assessment, 2018, 190, 333.	1.3	16
123	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiology, 2018, 178, 507-523.	2.3	134
124	Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Australian Journal of Botany, 2018, 66, 124.	0.3	6
125	The potential of Zambian copper-cobalt metallophytes for phytoremediation of minerals wastes. , 2018, , 208-227.		2
126	Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Scientific Reports, 2017, 7, 41861.	1.6	77

#	Article	IF	CITATIONS
127	Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy, 2017, 169, 346-355.	1.8	34
128	Ultramafic geoecology of South and Southeast Asia. , 2017, 58, 18.		101
129	The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L Plant and Soil, 2017, 421, 67-82.	1.8	49
130	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 2017, 213, 537-551.	3.5	190
131	Extreme nickel hyperaccumulation in the vascular tracts of the tree <i>Phyllanthus balgooyi</i> from Borneo. New Phytologist, 2016, 209, 1513-1526.	3.5	46
132	Plant-soil interactions in global biodiversity hotspots. Plant and Soil, 2016, 403, 1-5.	1.8	10
133	Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant and Soil, 2016, 406, 55-69.	1.8	116
134	Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant and Soil, 2016, 404, 35-45.	1.8	52
135	Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 2016, 26, 67-82.	0.6	47
136	Vegetation on ultramafic edaphic â€~islands' in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. Plant and Soil, 2016, 403, 77-101.	1.8	31
137	Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine) Tj ETQq1 1	0.784314 0.3	rg&T /Overlo
138	Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). , 2015, 57, 6.		11
139	Range extension of Christisonia scortechinii from mainland Southeast Asia into Borneo, and notes on the distinction between Aeginetia and Christisonia (Orobanchaceae). , 2015, 56, 28.		3
140	Commentary: Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Frontiers in Plant Science, 2015, 6, 554.	1.7	31
141	Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Australian Journal of Botany, 2015, 63, 204.	0.3	32
142	Pittosporum peridoticola (Pittosporaceae), a new ultramafic obligate species restricted to Kinabalu Park (Sabah, Malaysia). , 2015, 57, 4.		3
143	Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant and Soil, 2015, 389, 401-418.	1.8	29
144	Agromining: Farming for Metals in the Future?. Environmental Science & Technology, 2015, 49, 4773-4780.	4.6	243

#	Article	IF	CITATIONS
145	Multi-element Concentrations in Plant Parts and Fluids of Malaysian Nickel Hyperaccumulator Plants and some Economic and Ecological Considerations. Journal of Chemical Ecology, 2015, 41, 396-408.	0.9	67
146	Ecology of Paphiopedilum rothschildianum at the type locality in Kinabalu Park (Sabah, Malaysia). Biodiversity and Conservation, 2015, 24, 1641-1656.	1.2	33
147	Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). Plant Ecology, 2015, 216, 789-807.	0.7	14
148	Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 2015, 25, 243-259.	0.6	75
149	The flora of ultramafic soils in the Australia–Pacific Region: state of knowledge and research priorities. Australian Journal of Botany, 2015, 63, 173.	0.3	40
150	Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
151	Eriobotrya balgooyi (Rosaceae), a new obligate ultramafic endemic from Kinabalu Park, Borneo. Plant Ecology and Evolution 2014 147 134-140 [ifgite mso 9] <xml><0:OfficeDocumentSettings> <0:RelyOnVML/> <0:AllowPNG/></xml>	0.3	6
152	[endif] Gynura tambuyukonensis (Asteraceae), an obligate ultramafic species endemic to Mount Tambuyukon (Kinabalu Park, Sabah, Malaysia) [if gte mso<br 9]> <xml> <w:worddocument> <w:view>Normal</w:view> <w:zoom>O</w:zoom> <w:trackmoves></w:trackmoves> <w:trackformatting></w:trackformatting> <w:punctuationkerning></w:punctuationkerning> <w:validateagainstschemas></w:validateagainstschemas></w:worddocument></xml>	0.1	4
153	<w:savelfxmlinvalid>false</w:savelfxmlinvalid> <w:ignoremixedcontent>false. Phytotaxa, 2014, 158, 2 2 Nine new species of Timonius (Rubiaceae) from Kinabalu Park, Borneo. Phytotaxa, 2014, 181, 138.</w:ignoremixedcontent>	0.1	5
154	Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 2013, 362, 319-334.	1.8	1,069
155	Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 2013, 128, 72-79.	1.5	132
156	Sustaining Metal-Loving Plants in Mining Regions. Science, 2012, 337, 1172-1173.	6.0	28
157	Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. , 2010, , 7-40.		113
158	Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia. Plant and Soil, 0, , 1.	1.8	6

159Polymetallic (zinc and cadmium) hyperaccumulation in theÂAustralian legume Crotalaria1.8159novae-hollandiae compared to Crotalaria cunninghamii. Plant and Soil, 0, , .1