Antony van der Ent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 2013, 362, 319-334.	1.8	1,069
2	A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 2018, 218, 407-411.	3.5	470
3	Agromining: Farming for Metals in the Future?. Environmental Science & Technology, 2015, 49, 4773-4780.	4.6	243
4	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 2017, 213, 537-551.	3.5	190
5	Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. Environmental Science & Technology, 2018, 52, 11980-11994.	4.6	180
6	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. Plant Physiology, 2018, 178, 507-523.	2.3	134
7	Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 2013, 128, 72-79.	1.5	132
8	Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant and Soil, 2016, 406, 55-69.	1.8	116
9	Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. , 2010, , 7-40.		113
10	Xâ€ r ay elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytologist, 2018, 218, 432-452.	3.5	104
11	Ultramafic geoecology of South and Southeast Asia. , 2017, 58, 18.		101
12	Absorption of foliar-applied Zn in sunflower (<i>Helianthus annuus</i>): importance of the cuticle, stomata and trichomes. Annals of Botany, 2019, 123, 57-68.	1.4	81
13	Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Scientific Reports, 2017, 7, 41861.	1.6	77
14	Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 2015, 25, 243-259.	0.6	75
15	Multi-element Concentrations in Plant Parts and Fluids of Malaysian Nickel Hyperaccumulator Plants and some Economic and Ecological Considerations. Journal of Chemical Ecology, 2015, 41, 396-408.	0.9	67
16	Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant and Soil, 2018, 423, 1-11.	1.8	67
17	Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant and Soil, 2020, 449, 11-37.	1.8	66
18	Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant and Soil 2016, 404, 35-45	1.8	52

#	Article	IF	CITATIONS
19	X-Ray Fluorescence Ionomics of Herbarium Collections. Scientific Reports, 2019, 9, 4746.	1.6	52
20	Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena, 2018, 160, 154-169.	2.2	50
21	The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L Plant and Soil, 2017, 421, 67-82.	1.8	49
22	Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 2019, 202, 49-58.	1.5	48
23	Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 2016, 26, 67-82.	0.6	47
24	Extreme nickel hyperaccumulation in the vascular tracts of the tree <i>Phyllanthus balgooyi</i> from Borneo. New Phytologist, 2016, 209, 1513-1526.	3.5	46
25	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. Environmental Science & Technology, 2020, 54, 12072-12080.	4.6	46
26	The first tropical â€~metal farm': Some perspectives from field and pot experiments. Journal of Geochemical Exploration, 2019, 198, 114-122.	1.5	45
27	Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. Scientific Reports, 2018, 8, 9683.	1.6	42
28	Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 2020, 254, 109798.	3.8	42
29	Nickel hyperaccumulation in <i>Antidesma montis</i> â€ <i>silam</i> : from herbarium discovery to collection in the native habitat. Ecological Research, 2018, 33, 675-685.	0.7	41
30	The flora of ultramafic soils in the Australia–Pacific Region: state of knowledge and research priorities. Australian Journal of Botany, 2015, 63, 173.	0.3	40
31	A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Botanical Journal of the Linnean Society, 2020, 194, 1-22.	0.8	40
32	Methods to Visualize Elements in Plants. Plant Physiology, 2020, 182, 1869-1882.	2.3	40
33	Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Minerals Engineering, 2022, 182, 107537.	1.8	38
34	Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Scientific Reports, 2018, 8, 9659.	1.6	37
35	Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. Environmental and Experimental Botany, 2018, 147, 1-12.	2.0	35
36	Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy, 2017, 169, 346-355.	1.8	34

#	Article	IF	CITATIONS
37	Ecology of Paphiopedilum rothschildianum at the type locality in Kinabalu Park (Sabah, Malaysia). Biodiversity and Conservation, 2015, 24, 1641-1656.	1.2	33
38	Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Australian Journal of Botany, 2015, 63, 204.	0.3	32
39	Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. , 2018, 59, 9.		32
40	Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Annals of Botany, 2020, 125, 599-610.	1.4	32
41	Commentary: Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Frontiers in Plant Science, 2015, 6, 554.	1.7	31
42	Vegetation on ultramafic edaphic â€~islands' in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. Plant and Soil, 2016, 403, 77-101.	1.8	31
43	Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecological Research, 2018, 33, 659-674.	0.7	31
44	Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern <i>Dicranopteris linearis</i> from China. Environmental Science & Technology, 2020, 54, 2287-2294.	4.6	31
45	Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. Chemosphere, 2021, 282, 131096.	4.2	30
46	Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant and Soil, 2015, 389, 401-418.	1.8	29
47	A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology, 2020, 30, 1-13.	0.6	29
48	Sustaining Metal-Loving Plants in Mining Regions. Science, 2012, 337, 1172-1173.	6.0	28
49	The discovery of nickel hyperaccumulation in the New Caledonian tree <i>Pycnandra acuminata</i> 40 years on: an introduction to a Virtual Issue. New Phytologist, 2018, 218, 397-400.	3.5	27
50	Global Distribution and Ecology of Hyperaccumulator Plants. Mineral Resource Reviews, 2018, , 75-92.	1.5	27
51	Co-deposition of silicon with rare earth elements (REEs) and aluminium in the fern Dicranopteris linearis from China. Plant and Soil, 2019, 437, 427-437.	1.8	26
52	Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical <i>Psychotria</i> . American Journal of Botany, 2019, 106, 1377-1385.	0.8	25
53	The Maia Detector and Event Mode. Synchrotron Radiation News, 2018, 31, 21-27.	0.2	24
54	Distribution and chemical form of selenium in <i>Neptunia amplexicaulis</i> from Central Queensland, Australia. Metallomics, 2020, 12, 514-527.	1.0	23

#	Article	IF	CITATIONS
55	Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper–cobalt belt in Northern Zambia. Metallomics, 2020, 12, 682-701.	1.0	23
56	Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt, and zinc in the genus <i>Gossia</i> (Myrtaceae). Metallomics, 2021, 13, .	1.0	23
57	Soil amendments affecting nickel uptake and growth performance of tropical â€~metal crops' used for agromining. Journal of Geochemical Exploration, 2019, 203, 78-86.	1.5	22
58	Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. Plant and Soil, 2020, 450, 287-302.	1.8	22
59	Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. Frontiers in Plant Science, 2021, 12, 778275.	1.7	22
60	Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. Mineral Resource Reviews, 2018, , 117-133.	1.5	21
61	Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 2019, 196, 235-246.	1.5	20
62	Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining â€~metal crops'. Plant and Soil, 2019, 443, 27-39.	1.8	19
63	Confocal Volumetric μXRF and Fluorescence Computed μ-Tomography Reveals Arsenic Three-Dimensional Distribution within Intact <i>Pteris vittata</i> Fronds. Environmental Science & Technology, 2020, 54, 745-757.	4.6	19
64	Uptake, translocation and accumulation of nickel and cobalt in <i>Berkheya coddii</i> , a â€~metal crop' from South Africa. Metallomics, 2020, 12, 1278-1289.	1.0	19
65	Variation in rare earth element (REE), aluminium (Al) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. Plant and Soil, 2021, 461, 565-578.	1.8	18
66	Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. Environmental Geochemistry and Health, 2018, 40, 189-207.	1.8	17
67	Abnormal concentrations of Cu–Co in <i>Haumaniastrum katangense</i> , <i>Haumaniastrum robertii</i> and <i>Aeolanthus biformifolius</i> : contamination or hyperaccumulation?. Metallomics, 2019, 11, 586-596.	1.0	17
68	Growth effects in tropical nickelâ€agromining â€~metal crops' in response toÂnutrient dosing. Journal of Plant Nutrition and Soil Science, 2019, 182, 715-728.	1.1	17
69	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia). Applied Soil Ecology, 2019, 133, 70-80.	2.1	17
70	Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
71	Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. Environmental Monitoring and Assessment, 2018, 190, 333.	1.3	16

⁷²Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. Journal of Geochemical Exploration, 2019, 202, 113-127.

1.5 16

#	Article	IF	CITATIONS
73	Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. Jom, 2021, 73, 39-53.	0.9	16
74	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. Journal of Experimental Botany, 2021, 72, 5079-5092.	2.4	15
75	Global Distribution and Ecology of Hyperaccumulator Plants. Mineral Resource Reviews, 2021, , 133-154.	1.5	15
76	Farming for battery metals. Science of the Total Environment, 2022, 827, 154092.	3.9	15
77	Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). Plant Ecology, 2015, 216, 789-807.	0.7	14
78	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environmental Microbiology, 2020, 22, 1649-1665.	1.8	14
79	Exceptional Uptake and Accumulation of Chemical Elements in Plants: Extending the Hyperaccumulation Paradigm. Mineral Resource Reviews, 2021, , 99-131.	1.5	14
80	The â€ $$ europium anomalyâ€ M in plants: facts and fiction. Plant and Soil, 2022, 476, 721-728.	1.8	14
81	Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill. in response to solution pH variation in hydroponic culture. Plant Physiology and Biochemistry, 2020, 148, 133-141.	2.8	13
82	Manganese (hyper)accumulation within Australian Denhamia (Celastraceae): an assessment of the trait and manganese accumulation under controlled conditions. Plant and Soil, 2021, 463, 205-223.	1.8	13
83	Spatially-resolved localization and chemical speciation of nickel and zinc in <i>Noccaea tymphaea</i> and <i>Bornmuellera emarginata</i> . Metallomics, 2019, 11, 2052-2065.	1.0	12
84	Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to manganese toxicity in soybean and sunflower. Annals of Botany, 2020, 126, 331-341.	1.4	12
85	Rare earth elements, aluminium and silicon distribution in the fern <i>Dicranopteris linearis</i> revealed by μPIXE Maia analysis. Annals of Botany, 2021, 128, 17-30.	1.4	12
86	Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). , 2015, 57, 6.		11
87	X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. Plant and Soil, 2020, 448, 15-36.	1.8	11
88	Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo. Plant and Soil, 2020, 454, 225-243.	1.8	11
89	Tools for the Discovery of Hyperaccumulator Plant Species in the Field and in the Herbarium. Mineral Resource Reviews, 2021, , 183-195.	1.5	11
90	Plant-soil interactions in global biodiversity hotspots. Plant and Soil, 2016, 403, 1-5.	1.8	10

#	Article	IF	CITATIONS
91	Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia). Plant and Soil, 2019, 436, 543-563.	1.8	10
92	Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentinite dump site. Journal of Geochemical Exploration, 2019, 200, 139-151.	1.5	10
93	Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo – an adaptation to metalliferous sites in metal-tolerant <i>Biscutella laevigata</i> . Metallomics, 2020, 12, 42-53.	1.0	9
94	Synchrotron µXRF imaging of live seedlings of Berkheya coddii and Odontarrhena muralis during germination and seedling growth. Plant and Soil, 2020, 453, 487-501.	1.8	9
95	Cobalt hyperaccumulation in Rinorea cf. bengalensis (Violaceae) from Sabah: accumulation potential and tissue and cellular-level distribution of cobalt. Plant and Soil, 2020, 455, 289-303.	1.8	9
96	Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus. Annals of Botany, 2020, 126, 905-914.	1.4	9
97	Treasure from trash: Mining critical metals from waste and unconventional sources. Science of the Total Environment, 2021, 758, 143673.	3.9	9
98	Root foraging and selenium uptake in the Australian hyperaccumulator Neptunia amplexicaulis and nonâ€accumulator Neptunia gracilis. Plant and Soil, 2021, 462, 219-233.	1.8	9
99	Global Plant Ecology of Tropical Ultramafic Ecosystems. Botanical Review, The, 2023, 89, 115-157.	1.7	9
100	Comprehensive insights in thallium ecophysiology in the hyperaccumulator Biscutella laevigata. Science of the Total Environment, 2022, 838, 155899.	3.9	9
101	Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. Plant and Soil, 2021, 465, 83-95.	1.8	8
102	Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. Chemoecology, 2021, 31, 335-342.	0.6	7
103	Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant and Soil, 2021, 464, 375-389.	1.8	7
104	Is the aquatic macrophyte Crassula helmsii a genuine copper hyperaccumulator?. Plant and Soil, 2021, 464, 359.	1.8	7
105	In Situ Analysis of Nickel Uptake from Foliar Application in Pecan Using Instrumental µXRF Analysis. Journal of Soil Science and Plant Nutrition, 2022, 22, 1-9.	1.7	7
106	Eriobotrya balgooyi (Rosaceae), a new obligate ultramafic endemic from Kinabalu Park, Borneo. Plant Ecology and Evolution, 2014, 147, 134-140.	0.3	6
107	Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Australian Journal of Botany, 2018, 66, 124.	0.3	6
108	PIXE imaging of hyperaccumulator plants using the Maia detector array. Nuclear Instruments & Methods in Physics Research B, 2019, 451, 73-78.	0.6	6

#	Article	IF	CITATIONS
109	Scandium biogeochemistry at the ultramafic Lucknow deposit, Queensland, Australia. Journal of Geochemical Exploration, 2019, 204, 74-82.	1.5	6
110	Blepharidium guatemalense, an obligate nickel hyperaccumulator plant from non-ultramafic soils in Mexico. Chemoecology, 2021, 31, 169-187.	0.6	6
111	Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. Plant Methods, 2021, 17, 86.	1.9	6
112	Intensive cycling of nickel in a New Caledonian forest dominated by hyperaccumulator trees. Plant Journal, 2021, 107, 1040-1055.	2.8	6
113	Element Case Studies: Nickel (Tropical Regions). Mineral Resource Reviews, 2021, , 365-383.	1.5	6
114	Manganese accumulation and tissue-level distribution in Australian Macadamia (Proteaceae) species. Environmental and Experimental Botany, 2022, 193, 104668.	2.0	6
115	Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia. Plant and Soil, 0, , 1.	1.8	6
116	Thallium accumulation and distribution in Silene latifolia (Caryophyllaceae) grown in hydroponics. Plant and Soil, 2022, 480, 213-226.	1.8	6
117	Nine new species of Timonius (Rubiaceae) from Kinabalu Park, Borneo. Phytotaxa, 2014, 181, 138.	0.1	5
118	Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. Plant and Soil, 2020, 457, 293-320.	1.8	5
119	The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. International Journal of Phytoremediation, 2021, 23, 1157-1168.	1.7	5
120	Contrasting phosphorus (P) accumulation in response to soil P availability in â€~metal crops' from P-impoverished soils. Plant and Soil, 2021, 467, 155-164.	1.8	5
121	Fate of nickel in soybean seeds dressed with different forms of nickel. Rhizosphere, 2022, 21, 100464.	1.4	5
122	Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. International Journal of Phytoremediation, 2022, 24, 1141-1151.	1.7	5
123	Multimodal synchrotron X-ray fluorescence imaging reveals elemental distribution in seeds and seedlings of the Zn–Cd–Ni hyperaccumulator i>Noccaea caerulascens / in Metallomics, 2022, 14, . < :	1.0	5
124	<pre> </pre> (xini> <ir> <pre>initial initial initialia initial initial init</pre></ir>	0.1	4
125	Clobal research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine) Tj ETQq1 1	0.784314 0.3	rgBT /Over

126 Frequency distribution of foliar nickel is bimodal in the ultramafic flora of Kinabalu Park (Sabah,) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 62

#	Article	IF	CITATIONS
127	Bacterial community diversity and functional roles in the rhizosphere of Rinorea cf. bengalensis and Phyllanthus rufuschaneyi under a nickel concentration gradient. Plant and Soil, 2021, 459, 343-355.	1.8	4
128	Root responses to localised soil arsenic enrichment in the fern Pityrogramma calomelanos var. austroamericana grown in rhizoboxes. Plant Physiology and Biochemistry, 2021, 164, 147-159.	2.8	4
129	Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants. Mineral Resource Reviews, 2021, , 197-214.	1.5	4
130	Manganese Accumulation and Tissue-level Distribution in the Australian Hyperaccumulator Gossia Bidwillii (Myrtaceae). Tropical Plant Biology, 2022, 15, 1-11.	1.0	4
131	Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rain forest in New Caledonia. Forest Ecology and Management, 2022, 509, 120049.	1.4	4
132	Range extension of Christisonia scortechinii from mainland Southeast Asia into Borneo, and notes on the distinction between Aeginetia and Christisonia (Orobanchaceae). , 2015, 56, 28.		3
133	Pittosporum peridoticola (Pittosporaceae), a new ultramafic obligate species restricted to Kinabalu Park (Sabah, Malaysia). , 2015, 57, 4.		3
134	Novel Insights Into the Hyperaccumulation Syndrome in Pycnandra (Sapotaceae). Frontiers in Plant Science, 2020, 11, 559059.	1.7	3
135	Distribution of aluminium in hydrated leaves of tea (<i>Camellia sinensis</i>) using synchrotron- and laboratory-based X-ray fluorescence microscopy. Metallomics, 2020, 12, 1062-1069.	1.0	3
136	The biogeochemistry of copper metallophytes in the Roseby Corridor (North-West Queensland,) Tj ETQq0 0 0 r	gBT /Overlo 0.6	ock ₃ 10 Tf 50 3
137	Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator <i>Noccaea caerulescens</i> (Brassicaceae). Metallomics, 2021, 13, .	1.0	3
138	Variation in the ionome of tropical â€~metal crops' in response to soil potassium availability. Plant and Soil, 2021, 465, 185-195.	1.8	3
139	Convergent patterns of tissue-level distribution of elements in different tropical woody nickel hyperaccumulator species from Borneo Island. AoB PLANTS, 2020, 12, plaa058.	1.2	3
140	Contrasting nickel and manganese accumulation and localization in New Caledonian Cunoniaceae. Plant and Soil, 2022, 475, 515-534.	1.8	3
141	A global forum on ultramafic ecosystems: from ultramafic ecology to rehabilitation of degraded environments. Ecological Research, 2018, 33, 517-522.	0.7	2
142	Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia). Plant and Soil, 2019, 440, 201-218.	1.8	2
143	Phytometallomics. Metallomics, 2020, 12, 324-325.	1.0	2
144	Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. BMC Plant Biology, 2021, 21, 437.	1.6	2

#	Article	lF	CITATIONS
145	The potential of Zambian copper-cobalt metallophytes for phytoremediation of minerals wastes. , 2018, , 208-227.		2
146	Fluoride hyperaccumulation in Gastrolobium species (Fabaceae) from Western Australia. Australian Journal of Botany, 2021, 69, 516.	0.3	2
147	Geochemical cycles of arsenic in historic tin tailings from multiple ore sources: an example from Australia. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
148	Assessment of plant diversity and foliar chemistry on the Sri Lankan ultramafics reveals inconsistencies in the metal hyperaccumulator trait. Ecological Research, 2022, 37, 215-227.	0.7	2
149	Cellular-level distribution of manganese in <i>Macadamia integrifolia, M. ternifolia</i> , and <i>M. tetraphylla</i> from Australia. Metallomics, 2022, 14, .	1.0	2
150	Biogeochemical cycling of nickel and nutrients in a naturalÂhigh-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia. Chemoecology, 2022, 32, 15-29.	0.6	1
151	Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. Journal of Geochemical Exploration, 2022, 237, 106985.	1.5	1
152	High natural bromine concentrations in organic Brazil Nuts from Bolivia. Journal of Food Composition and Analysis, 2022, 110, 104533.	1.9	1
153	Nickel distribution in. Australian Journal of Botany, 2022, 70, 304-310.	0.3	1
154	Polymetallic (zinc and cadmium) hyperaccumulation in theÂAustralian legume Crotalaria novae-hollandiae compared to Crotalaria cunninghamii. Plant and Soil, 0, , .	1.8	1
155	Nickel hyperaccumulation, elemental profiles and agromining potential of three species of <i>Odontarrhena</i> from the ultramafics of Western Iran. International Journal of Phytoremediation, 2023, 25, 381-392.	1.7	1
156	Proof-of-concept of polymetallic phyto-extraction of base metal mine tailings from Queensland, Australia. Plant and Soil, 2022, 480, 349-367.	1.8	1
157	Corrigendum to: Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Australian Journal of Botany, 2018, 66, 286.	0.3	0
158	Letter to the editor of Chemosphere regarding Xu etÂal. (2020). Chemosphere, 2020, 260, 128050.	4.2	0
159	Contrasting patterns of nickel distribution in the hyperaccumulators <i>Phyllanthus balgooyi</i> and <i>Phyllanthus rufuschaneyi</i> from Malaysian Borneo. Metallomics, 2022, 14, .	1.0	0