Antony van der Ent

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7622944/antony-van-der-ent-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 151 3,707 57 g-index h-index citations papers 168 5.96 4,536 4.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
151	Fate of nickel in soybean seeds dressed with different forms of nickel. <i>Rhizosphere</i> , 2022 , 21, 100464	3.5	
150	Manganese Accumulation and Tissue-level Distribution in the Australian Hyperaccumulator Gossia Bidwillii (Myrtaceae). <i>Tropical Plant Biology</i> , 2022 , 15, 1-11	1.6	O
149	Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rain forest in New Caledonia. <i>Forest Ecology and Management</i> , 2022 , 509, 120049	3.9	2
148	Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. <i>Journal of Geochemical Exploration</i> , 2022 , 237, 106985	3.8	О
147	Farming for battery metals Science of the Total Environment, 2022, 827, 154092	10.2	0
146	High natural bromine concentrations in organic Brazil Nuts from Bolivia. <i>Journal of Food Composition and Analysis</i> , 2022 , 110, 104533	4.1	О
145	Assessment of plant diversity and foliar chemistry on the Sri Lankan ultramafics reveals inconsistencies in the metal hyperaccumulator trait. <i>Ecological Research</i> , 2022 , 37, 215-227	1.9	1
144	Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. <i>Minerals Engineering</i> , 2022 , 182, 107537	4.9	2
143	Comprehensive insights in thallium ecophysiology in the hyperaccumulator Biscutella laevigata <i>Science of the Total Environment</i> , 2022 , 155899	10.2	2
142	Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review <i>Frontiers in Plant Science</i> , 2021 , 12, 778275	6.2	6
141	Geochemical cycles of arsenic in historic tin tailings from multiple ore sources: an example from Australia. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	O
140	Fluoride hyperaccumulation in Gastrolobium species (Fabaceae) from Western Australia. <i>Australian Journal of Botany</i> , 2021 , 69, 516	1.2	1
139	Manganese accumulation and tissue-level distribution in Australian Macadamia (Proteaceae) species. Environmental and Experimental Botany, 2021, 104668	5.9	O
138	Tools for the Discovery of Hyperaccumulator Plant Species in the Field and in the Herbarium. <i>Mineral Resource Reviews</i> , 2021 , 183-195	0.5	3
137	Exceptional Uptake and Accumulation of Chemical Elements in Plants: Extending the Hyperaccumulation Paradigm. <i>Mineral Resource Reviews</i> , 2021 , 99-131	0.5	3
136	Methods for Visualizing Elemental Distribution in Hyperaccumulator Plants. <i>Mineral Resource Reviews</i> , 2021 , 197-214	0.5	2
135	Element Case Studies: Nickel (Tropical Regions). <i>Mineral Resource Reviews</i> , 2021 , 365-383	0.5	4

134	Global Distribution and Ecology of Hyperaccumulator Plants. <i>Mineral Resource Reviews</i> , 2021 , 133-154	0.5	8
133	Quantification of nickel and cobalt mobility and accumulation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). <i>Metallomics</i> , 2021 , 13,	4.5	1
132	Manganese (hyper)accumulation within Australian Denhamia (Celastraceae): an assessment of the trait and manganese accumulation under controlled conditions. <i>Plant and Soil</i> , 2021 , 463, 205-223	4.2	1
131	Uptake of yttrium, lanthanum and neodymium in Melastoma malabathricum and Dicranopteris linearis from Malaysia. <i>Chemoecology</i> , 2021 , 31, 335-342	2	1
130	Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. <i>Plant and Soil</i> , 2021 , 464, 375	4.2	3
129	Is the aquatic macrophyte Crassula helmsii a genuine copper hyperaccumulator?. <i>Plant and Soil</i> , 2021 , 464, 359	4.2	2
128	Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. <i>Plant and Soil</i> , 2021 , 465, 83-95	4.2	3
127	Non-glandular trichomes of sunflower are important in the absorption and translocation of foliar-applied Zn. <i>Journal of Experimental Botany</i> , 2021 , 72, 5079-5092	7	5
126	Variation in the ionome of tropical thetal crops(In response to soil potassium availability. <i>Plant and Soil</i> , 2021 , 465, 185-195	4.2	2
125	Root responses to localised soil arsenic enrichment in the fern Pityrogramma calomelanos var. austroamericana grown in rhizoboxes. <i>Plant Physiology and Biochemistry</i> , 2021 , 164, 147-159	5.4	1
124	The biogeochemistry of copper metallophytes in the Roseby Corridor (North-West Queensland, Australia). <i>Chemoecology</i> , 2021 , 31, 19-30	2	2
123	Treasure from trash: Mining critical metals from waste and unconventional sources. <i>Science of the Total Environment</i> , 2021 , 758, 143673	10.2	4
122	Bacterial community diversity and functional roles in the rhizosphere of Rinorea cf. bengalensis and Phyllanthus rufuschaneyi under a nickel concentration gradient. <i>Plant and Soil</i> , 2021 , 459, 343-355	4.2	1
121	Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. <i>Jom</i> , 2021 , 73, 39-53	2.1	11
120	Variation in rare earth element (REE), aluminium (Al) and silicon (Si) accumulation among populations of the hyperaccumulator Dicranopteris linearis in southern China. <i>Plant and Soil</i> , 2021 , 461, 565-578	4.2	4
119	Root foraging and selenium uptake in the Australian hyperaccumulator Neptunia amplexicaulis and non-accumulator Neptunia gracilis. <i>Plant and Soil</i> , 2021 , 462, 219-233	4.2	3
118	Rare earth elements, aluminium and silicon distribution in the fern Dicranopteris linearis revealed by PIXE Maia analysis. <i>Annals of Botany</i> , 2021 , 128, 17-30	4.1	2
117	The potential of for nickel agromining in Mexico and Central America. <i>International Journal of Phytoremediation</i> , 2021 , 23, 1157-1168	3.9	3

116	Blepharidium guatemalense, an obligate nickel hyperaccumulator plant from non-ultramafic soils in Mexico. <i>Chemoecology</i> , 2021 , 31, 169-187	2	5
115	Incidence of hyperaccumulation and tissue-level distribution of manganese, cobalt, and zinc in the genus Gossia (Myrtaceae). <i>Metallomics</i> , 2021 , 13,	4.5	7
114	Contrasting phosphorus (P) accumulation in response to soil P availability in thetal crops from P-impoverished soils. <i>Plant and Soil</i> , 2021 , 467, 155	4.2	2
113	Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. <i>Plant Methods</i> , 2021 , 17, 86	5.8	2
112	Intensive cycling of nickel in a New Caledonian forest dominated by hyperaccumulator trees. <i>Plant Journal</i> , 2021 , 107, 1040-1055	6.9	4
111	Isotopic signatures reveal zinc cycling in the natural habitat of hyperaccumulator Dichapetalum gelonioides subspecies from Malaysian Borneo. <i>BMC Plant Biology</i> , 2021 , 21, 437	5.3	O
110	Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties. <i>Chemosphere</i> , 2021 , 282, 131096	8.4	3
109	Metal and metalloid accumulation in native plants around a copper mine site: implications for phytostabilization. <i>International Journal of Phytoremediation</i> , 2021 , 1-11	3.9	
108	Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a 'metal crop' from South Africa. <i>Metallomics</i> , 2020 , 12, 1278-1289	4.5	12
107	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). <i>Environmental Microbiology</i> , 2020 , 22, 1649-1665	5.2	8
106	Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. <i>Plant and Soil</i> , 2020 , 449, 11-37	4.2	32
105	Distribution of aluminium in hydrated leaves of tea (Camellia sinensis) using synchrotron- and laboratory-based X-ray fluorescence microscopy. <i>Metallomics</i> , 2020 , 12, 1062-1069	4.5	1
104	Frequency distribution of foliar nickel is bimodal in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). <i>Annals of Botany</i> , 2020 , 126, 1017-1027	4.1	2
103	Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus. <i>Annals of Botany</i> , 2020 , 126, 905-914	4.1	7
102	Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. <i>Metallomics</i> , 2020 , 12, 514-527	4.5	5
101	Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill. in response to solution pH variation in hydroponic culture. <i>Plant Physiology and Biochemistry</i> , 2020 , 148, 133-141	5.4	5
100	Methods to Visualize Elements in Plants. <i>Plant Physiology</i> , 2020 , 182, 1869-1882	6.6	15
99	Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern from China. <i>Environmental Science & Earth Element</i> (2007), 54, 2287-2294	10.3	15

(2020-2020)

98	Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to manganese toxicity in soybean and sunflower. <i>Annals of Botany</i> , 2020 , 126, 331-341	4.1	5
97	Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper-cobalt belt in Northern Zambia. <i>Metallomics</i> , 2020 , 12, 682-701	4.5	13
96	Convergent patterns of tissue-level distribution of elements in different tropical woody nickel hyperaccumulator species from Borneo Island. <i>AoB PLANTS</i> , 2020 , 12, plaa058	2.9	O
95	Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. <i>Journal of Environmental Management</i> , 2020 , 254, 109798	7.9	21
94	A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. <i>Chemoecology</i> , 2020 , 30, 1-13	2	14
93	X-ray fluorescence elemental mapping of roots, stems and leaves of the nickel hyperaccumulators Rinorea cf. bengalensis and Rinorea cf. javanica (Violaceae) from Sabah (Malaysia), Borneo. <i>Plant and Soil</i> , 2020 , 448, 15-36	4.2	8
92	Confocal Volumetric IRF and Fluorescence Computed ITomography Reveals Arsenic Three-Dimensional Distribution within Intact Fronds. <i>Environmental Science & Environmental Scie</i>	10.3	8
91	Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo - an adaptation to metalliferous sites in metal-tolerant Biscutella laevigata. <i>Metallomics</i> , 2020 , 12, 42-53	4.5	8
90	Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. <i>Annals of Botany</i> , 2020 , 125, 599-610	4.1	17
89	Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. <i>Plant and Soil</i> , 2020 , 457, 293-320	4.2	4
88	Letter to the editor of Chemosphere regarding Xu et🗟l. (2020). Chemosphere, 2020 , 260, 128050	8.4	
87	A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. <i>Botanical Journal of the Linnean Society</i> , 2020 , 194, 1-22	2.2	22
86	Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo. <i>Plant and Soil</i> , 2020 , 454, 225-243	4.2	8
85	Novel Insights Into the Hyperaccumulation Syndrome in (Sapotaceae). <i>Frontiers in Plant Science</i> , 2020 , 11, 559059	6.2	1
84	Chemical Speciation and Distribution of Cadmium in Rice Grain and Implications for Bioavailability to Humans. <i>Environmental Science & Environmental S</i>	10.3	18
83	Synchrotron µXRF imaging of live seedlings of Berkheya coddii and Odontarrhena muralis during germination and seedling growth. <i>Plant and Soil</i> , 2020 , 453, 487-501	4.2	2
82	Cobalt hyperaccumulation in Rinorea cf. bengalensis (Violaceae) from Sabah: accumulation potential and tissue and cellular-level distribution of cobalt. <i>Plant and Soil</i> , 2020 , 455, 289-303	4.2	5
81	Root foraging and avoidance in hyperaccumulator and excluder plants: a rhizotron experiment. <i>Plant and Soil</i> , 2020 , 450, 287-302	4.2	11

80	Abnormal concentrations of Cu-Co in Haumaniastrum katangense, Haumaniastrum robertii and Aeolanthus biformifolius: contamination or hyperaccumulation?. <i>Metallomics</i> , 2019 , 11, 586-596	4.5	10
79	Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia). <i>Plant and Soil</i> , 2019 , 436, 543-563	4.2	9
78	Growth effects in tropical nickel-agromining thetal crops' in response to Inutrient dosing. <i>Journal of Plant Nutrition and Soil Science</i> , 2019 , 182, 715-728	2.3	16
77	PIXE imaging of hyperaccumulator plants using the Maia detector array. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2019 , 451, 73-78	1.2	3
76	Scandium biogeochemistry at the ultramafic Lucknow deposit, Queensland, Australia. <i>Journal of Geochemical Exploration</i> , 2019 , 204, 74-82	3.8	1
75	Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia). <i>Plant and Soil</i> , 2019 , 440, 201-218	4.2	1
74	Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. <i>Journal of Geochemical Exploration</i> , 2019 , 202, 113-127	3.8	12
73	Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulator plants in the flora of Sabah (Malaysia, Borneo Island). <i>Journal of Geochemical Exploration</i> , 2019 , 202, 49-58	3.8	29
72	X-Ray Fluorescence Ionomics of Herbarium Collections. <i>Scientific Reports</i> , 2019 , 9, 4746	4.9	26
71	Soil amendments affecting nickel uptake and growth performance of tropical thetal cropsused for agromining. <i>Journal of Geochemical Exploration</i> , 2019 , 203, 78-86	3.8	18
70	Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes. <i>Annals of Botany</i> , 2019 , 123, 57-68	4.1	48
69	Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining Thetal crops [Plant and Soil, 2019, 443, 27-39]	4.2	16
68	Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. <i>American Journal of Botany</i> , 2019 , 106, 1377-1385	2.7	16
67	Co-deposition of silicon with rare earth elements (REEs) and aluminium in the fern Dicranopteris linearis from China. <i>Plant and Soil</i> , 2019 , 437, 427-437	4.2	16
66	Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentinite dump site. <i>Journal of Geochemical Exploration</i> , 2019 , 200, 139-151	3.8	7
65	Tracking Metal Ions in Biology Using X-Ray Methods 2019 , 1-17		1
64	Spatially-resolved localization and chemical speciation of nickel and zinc in Noccaea tymphaea and Bornmuellera emarginata. <i>Metallomics</i> , 2019 , 11, 2052-2065	4.5	7
63	The first tropical thetal farm[ISome perspectives from field and pot experiments. <i>Journal of Geochemical Exploration</i> , 2019 , 198, 114-122	3.8	34

(2018-2019)

62	Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). <i>Journal of Geochemical Exploration</i> , 2019 , 196, 235-246	3.8	14	
61	Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia). <i>Applied Soil Ecology</i> , 2019 , 133, 70-80	5	14	
60	Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). <i>Ecological Research</i> , 2018 , 33, 659-674	1.9	26	
59	The discovery of nickel hyperaccumulation in the New Caledonian tree Pycnandra acuminata 40 years on: an introduction to a Virtual Issue. <i>New Phytologist</i> , 2018 , 218, 397-400	9.8	16	
58	Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. <i>Plant and Soil</i> , 2018 , 423, 1-11	4.2	54	
57	Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. <i>Ecological Research</i> , 2018 , 33, 675-685	1.9	32	
56	Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. <i>Botanical Studies</i> , 2018 , 59, 9	2.3	25	
55	Environmental geochemistry of the abandoned Mamut Copper Mine (Sabah) Malaysia. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 189-207	4.7	11	
54	Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). <i>Catena</i> , 2018 , 160, 154-169	5.8	36	
53	X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. <i>New Phytologist</i> , 2018 , 218, 432-452	9.8	72	
52	Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. <i>Scientific Reports</i> , 2018 , 8, 9683	4.9	36	
51	Corrigendum to: Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. <i>Australian Journal of Botany</i> , 2018 , 66, 286	1.2		
50	Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. <i>Environmental Monitoring and Assessment</i> , 2018 , 190, 333	3.1	9	
49	Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. <i>Plant Physiology</i> , 2018 , 178, 507-523	6.6	82	
48	Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. <i>Australian Journal of Botany</i> , 2018 , 66, 124	1.2	4	
47	The potential of Zambian copper-cobalt metallophytes for phytoremediation of minerals wastes 2018 , 208-227		2	
46	Zinc and lead accumulation characteristics and in vivo distribution of Zn2+ in the hyperaccumulator Noccaea caerulescens elucidated with fluorescent probes and laser confocal microscopy. <i>Environmental and Experimental Botany</i> , 2018 , 147, 1-12	5.9	28	
45	Global Distribution and Ecology of Hyperaccumulator Plants. <i>Mineral Resource Reviews</i> , 2018 , 75-92	0.5	23	

44	Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. <i>Mineral Resource Reviews</i> , 2018 , 117-133	0.5	16
43	A global database for plants that hyperaccumulate metal and metalloid trace elements. <i>New Phytologist</i> , 2018 , 218, 407-411	9.8	295
42	The Maia Detector and Event Mode. Synchrotron Radiation News, 2018, 31, 21-27	0.6	15
41	Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. <i>Environmental Science & Documental Science & Docume</i>	10.3	104
40	A global forum on ultramafic ecosystems: from ultramafic ecology to rehabilitation of degraded environments. <i>Ecological Research</i> , 2018 , 33, 517-522	1.9	
39	Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. <i>Scientific Reports</i> , 2018 , 8, 9659	4.9	31
38	Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). <i>Scientific Reports</i> , 2017 , 7, 41861	4.9	64
37	Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. <i>Hydrometallurgy</i> , 2017 , 169, 346-355	4	25
36	Ultramafic geoecology of South and Southeast Asia. <i>Botanical Studies</i> , 2017 , 58, 18	2.3	70
35	The accumulation and fractionation of Rare Earth Elements in hydroponically grown Phytolacca americana L <i>Plant and Soil</i> , 2017 , 421, 67-82	4.2	25
34	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. <i>New Phytologist</i> , 2017 , 213, 537-551	9.8	135
33	Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). <i>Plant and Soil</i> , 2016 , 404, 35-45	4.2	47
32	Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). <i>Chemoecology</i> , 2016 , 26, 67-82	2	36
31	Vegetation on ultramafic edaphic Islands In Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. <i>Plant and Soil</i> , 2016 , 403, 77-101	4.2	25
30	Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. <i>New Phytologist</i> , 2016 , 209, 1513-26	9.8	41
29	Current status and challenges in developing nickel phytomining: an agronomic perspective. <i>Plant and Soil</i> , 2016 , 406, 55-69	4.2	85
28	Agromining: farming for metals in the future?. Environmental Science & Environ	-8© .3	188
27	Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. <i>Journal of Chemical Ecology</i> , 2015 , 41, 396-408	2.7	63

(2012-2015)

26	Ecology of Paphiopedilum rothschildianum at the type locality in Kinabalu Park (Sabah, Malaysia). <i>Biodiversity and Conservation</i> , 2015 , 24, 1641-1656	3.4	20
25	Habitat differentiation of obligate ultramafic Nepenthes endemic to Mount Kinabalu and Mount Tambuyukon (Sabah, Malaysia). <i>Plant Ecology</i> , 2015 , 216, 789-807	1.7	10
24	Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). <i>Chemoecology</i> , 2015 , 25, 243-259	2	68
23	The flora of ultramafic soils in the AustraliaBacific Region: state of knowledge and research priorities. <i>Australian Journal of Botany</i> , 2015 , 63, 173	1.2	30
22	Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia): a summary and synthesis. <i>Australian Journal of Botany</i> , 2015 , 63, 1	1.2	15
21	Global research on ultramafic (serpentine) ecosystems (8th International Conference on Serpentine Ecology in Sabah, Malaysia). <i>Australian Journal of Botany</i> , 2015 , 63, iii	1.2	4
20	Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia). <i>Botanical Studies</i> , 2015 , 57, 6	2.3	10
19	Range extension of Christisonia scortechinii from mainland Southeast Asia into Borneo, and notes on the distinction between Aeginetia and Christisonia (Orobanchaceae). <i>Botanical Studies</i> , 2015 , 56, 28	2.3	1
18	Commentary: Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. <i>Frontiers in Plant Science</i> , 2015 , 6, 554	6.2	25
17	Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). <i>Australian Journal of Botany</i> , 2015 , 63, 204	1.2	26
16	Pittosporum peridoticola (Pittosporaceae), a new ultramafic obligate species restricted to Kinabalu Park (Sabah, Malaysia). <i>Botanical Studies</i> , 2015 , 57, 4	2.3	1
15	Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. <i>Plant and Soil</i> , 2015 , 389, 401-418	4.2	25
14	Gynura tambuyukonensis (Asteraceae), an obligate ultramafic species endemic to Mount Tambuyukon (Kinabalu Park, Sabah, Malaysia). <i>Phytotaxa</i> , 2014 , 158, 291	0.7	3
13	Nine new species of Timonius (Rubiaceae) from Kinabalu Park, Borneo. <i>Phytotaxa</i> , 2014 , 181, 138	0.7	5
12	Eriobotrya balgooyi (Rosaceae), a new obligate ultramafic endemic from Kinabalu Park, Borneo. <i>Plant Ecology and Evolution</i> , 2014 , 147, 134-140	1.6	4
11	Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. <i>Plant and Soil</i> , 2013 , 362, 319-334	4.2	836
10	Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): Mining, nickel hyperaccumulators and opportunities for phytomining. <i>Journal of Geochemical Exploration</i> , 2013 , 128, 72-79	3.8	105
9	Sustaining metal-loving plants in mining regions. <i>Science</i> , 2012 , 337, 1172-3	33.3	21

8	Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America7-40		81
7	Soil-plant relationships of metallophytes of the zinc-lead-copper Dugald River gossan, Queensland, Australia. <i>Plant and Soil</i> ,1	4.2	O
6	The Buropium anomalylin plants: facts and fiction. Plant and Soil,1	4.2	1
5	Africa® Mineral Fortune		3
4	Biogeochemical cycling of nickel and nutrients in a natural high-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia. <i>Chemoecology</i> ,1	2	
3		3.2	o
	hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia. <i>Chemoecology</i> ,1 In Situ Analysis of Nickel Uptake from Foliar Application in Pecan Using Instrumental IXRF Analysis.		0