
Bertrand Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benefits of a Tangible Interface for Collaborative Learning and Interaction. IEEE Transactions on Learning Technologies, 2011, 4, 222-232.	3.2	158
2	Real-time mutual gaze perception enhances collaborative learning and collaboration quality. International Journal of Computer-Supported Collaborative Learning, 2013, 8, 375-397.	3.0	117
3	Flipping the Flipped Classroom: A Study of the Effectiveness of Video Lectures Versus Constructivist Exploration Using Tangible User Interfaces. IEEE Transactions on Learning Technologies, 2016, 9, 5-17.	3.2	59
4	Leveraging mobile eye-trackers to capture joint visual attention in co-located collaborative learning groups. International Journal of Computer-Supported Collaborative Learning, 2018, 13, 241-261.	3.0	56
5	Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience. IEEE Transactions on Learning Technologies, 2013, 6, 117-129.	3.2	52
6	Phylo-Genie. , 2012, , .		49
7	Toward collaboration sensing. International Journal of Computer-Supported Collaborative Learning, 2014, 9, 371-395.	3.0	33
8	Using Mobile Eye-Trackers to Unpack the Perceptual Benefits of a Tangible User Interface for Collaborative Learning. ACM Transactions on Computer-Human Interaction, 2016, 23, 1-23.	5.7	31
9	Collaboration Analytics — Current State and Potential Futures. Journal of Learning Analytics, 2021, 8, 1-12.	2.4	31
10	Unpacking the relationship between existing and new measures of physiological synchrony and collaborative learning: a mixed methods study. International Journal of Computer-Supported Collaborative Learning, 2020, 15, 89-113.	3.0	23
11	Does Seeing One Another's Gaze Affect Group Dialogue? A Computational Approach. Journal of Learning Analytics, 2015, 2, 107-133.	2.4	22
12	The Effect of Highly Scaffolded Versus General Instruction on Students' Exploratory Behavior and Arousal. Technology, Knowledge and Learning, 2017, 22, 105-128.	4.9	20
13	Shared Gaze Visualizations in Collaborative Interactions: Past, Present and Future. Interacting With Computers, 2021, 33, 115-133.	1.5	19
14	Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science. International Journal of Science Education, 2018, 40, 867-893.	1.9	17
15	Tangible User Interfaces and Contrasting Cases as a Preparation for Future Learning. Journal of Science Education and Technology, 2018, 27, 369-384.	3.9	12
16	Lowering Barriers for Accessing Sensor Data in Education: Lessons Learned from Teaching Multimodal Learning Analytics to Educators. Journal for STEM Education Research, 2020, 3, 91-124.	1.5	12
17	How Can High-Frequency Sensors Capture Collaboration? A Review of the Empirical Links between Multimodal Metrics and Collaborative Constructs. Sensors, 2021, 21, 8185.	3.8	12

18 Multimodal Data Collection Made Easy: The EZ-MMLA Toolkit. , 2021, , .

#	Article	IF	CITATIONS
19	Relationships Between Body Postures and Collaborative Learning States in an Augmented Reality Study. Lecture Notes in Computer Science, 2020, , 257-262.	1.3	9
20	Gesture and Gaze: Multimodal Data in Dyadic Interactions. , 2021, , 625-641.		5
21	Augmenting Social Science Research with Multimodal Data Collection: The EZ-MMLA Toolkit. Sensors, 2022, 22, 568.	3.8	4
22	A Methodology for Capturing Joint Visual Attention Using Mobile Eye-Trackers. Journal of Visualized Experiments, 2020, , .	0.3	3
23	Toward capturing divergent collaboration in makerspaces using motion sensors. Information and Learning Science, 2022, ahead-of-print, .	1.3	1
24	Augmented Reality in the Learning Sciences. , 2022, , 340-361.		1