Ning Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622175/publications.pdf

Version: 2024-02-01

		159358	189595
80	2,951	30	50
papers	citations	h-index	g-index
82	82	82	1953
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Adjusting the interfacial adhesion via surface modification to prepare high-performance fibers. Nano Materials Science, 2023, 5, 1-14.	3.9	15
2	Perovskite oxides for oxygen transport: Chemistry and material horizons. Science of the Total Environment, 2022, 806, 151213.	3.9	58
3	Biodiesel synthesis from Prunus bokhariensis non-edible seed oil by using green silver oxide nanocatalyst. Chemosphere, 2022, 291, 132780.	4.2	16
4	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	5.2	54
5	A novel cobalt chloride hydrate modified Co-MOF derived carbon microspheres as anode materials for lithium ion batteries. Chemical Engineering Journal, 2022, 433, 133568.	6.6	27
6	Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chemical Engineering Journal, 2022, 431, 134104.	6.6	124
7	Cobalt-doped TaOCl3 nanoparticles/carbon compounds with advanced specific capacity for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 897, 163193.	2.8	10
8	Perovskite oxide for emerging photo(electro)catalysis in energy and environment. Environmental Research, 2022, 205, 112544.	3.7	50
9	Boosting the electrochemical nitrogen reduction by rhenium-doping modulated TiO2 nanofibers. Chemical Engineering Journal, 2022, 434, 134648.	6.6	16
10	Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry, 2022, 107, 20-30.	2.9	79
11	Nitrogen-Doped Porous Ag–C@Co ₃ O ₄ Nanocomposite for Boosting Lithium Ion Batteries. Energy & Samp; Fuels, 2022, 36, 2861-2871.	2.5	11
12	Valorisation of nuts biowaste: Prospects in sustainable bio(nano)catalysts and environmental applications. Journal of Cleaner Production, 2022, 347, 131220.	4.6	71
13	Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment. Journal of Colloid and Interface Science, 2022, 617, 118-128.	5.0	20
14	Heavy metals pollution characteristics and risk assessment in sediments and waters: The case of Tianjin, China. Environmental Research, 2022, 212, 113162.	3.7	21
15	Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food and Chemical Toxicology, 2022, 164, 113010.	1.8	16
16	Exsolution of CoFe(Ru) nanoparticles in Ru-doped (La0.8Sr0.2)0.9Co0.1Fe0.8Ru0.1O3â^'Î' for efficient oxygen evolution reaction. Nano Research, 2022, 15, 6977-6986.	5.8	34
17	Arsenite (III) removal via manganese-decoration on cellulose nanocrystal -grafted polyethyleneimine nanocomposite. Chemosphere, 2022, 303, 134925.	4.2	12
18	The effect of cleaner and sustainable sewage fee-to-tax on business innovation. Journal of Cleaner Production, 2022, 361, 132287.	4.6	20

#	Article	IF	CITATIONS
19	Artificial light-harvesting systems and their applications in photocatalysis and cell labeling. ChemPhysMater, 2022, 1, 281-293.	1.4	17
20	Rational design of Ruddlesden–Popper perovskite electrocatalyst for oxygen reduction to hydrogen peroxide. SusMat, 2022, 2, 456-465.	7.8	25
21	Review of metal oxides as anode materials for lithium-ion batteries. Dalton Transactions, 2022, 51, 9584-9590.	1.6	26
22	Rational design of mixed ionic–electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305, 135483.	4.2	15
23	Insights into MXenes-based electrocatalysts for oxygen reduction. Energy, 2022, 255, 124465.	4.5	15
24	Scientometric analysis and scientific trends on microplastics research. Chemosphere, 2022, 304, 135337.	4.2	32
25	Facile preparation of visible light-sensitive layered g-C3N4 for photocatalytic removal of organic pollutants. Chemosphere, 2022, 307, 135718.	4.2	5
26	Numerical simulation of liquid jet atomization in subsonic crossflow. Energy, 2022, 257, 124676.	4.5	13
27	Insights into electrochemical hydrogen compressor operating parameters and membrane electrode assembly degradation mechanisms. Journal of Power Sources, 2021, 484, 229249.	4.0	18
28	Investigation of perovskite BaCe1-xMnxO3-δfor methane combustion. Ceramics International, 2021, 47, 8762-8768.	2.3	13
29	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	11.1	182
30	Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Separation and Purification Technology, 2021, 261, 118295.	3.9	33
31	Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter, 2021, 4, 1720-1734.	5.0	62
32	Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. Journal of Environmental Management, 2021, 292, 112763.	3.8	44
33	Vanadium Metaphosphate V(PO ₃) ₃ Derived from Vâ€MOF as a Novel Anode for Lithiumâ€ion Batteries. ChemistrySelect, 2021, 6, 8150-8157.	0.7	11
34	Thermal Analysis and Energy Efficiency Improvements in Tunnel Kiln for Sustainable Environment. Processes, 2021, 9, 1629.	1.3	6
35	Recent Breakthroughs in the Bottleneck of Cathode Materials for Li–S Batteries. Energy & Fuels, 2021, 35, 15455-15471.	2.5	25
36	Nanoporous silver-modified LaCoO3-δ perovskite for oxygen reduction reaction. Electrochimica Acta, 2021, 391, 138908.	2.6	15

#	Article	IF	Citations
37	Perovskite and related oxide based electrodes for water splitting. Journal of Cleaner Production, 2021, 318, 128544.	4.6	70
38	Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environmental Research, 2021, 201, 111563.	3.7	22
39	Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environmental Research, 2021, 202, 111684.	3.7	15
40	TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. Journal of Environmental Management, 2021, 297, 113311.	3.8	79
41	Electromagnetic self-encapsulation strategy to develop Al-matrix composite phase change material for thermal energy storage. Chemical Engineering Journal, 2021, 425, 131664.	6.6	10
42	Electromagnetic construction and mechanical properties of in-situ Si reinforced Al matrix functionally graded material with Si-richâ—ŽSi-poor coating structure. Composites Part B: Engineering, 2021, 226, 109341.	5.9	4
43	A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 4734-4743.	5.2	97
44	Perovskite oxide based composite hollow fiber membrane for CO2 transport. Ceramics International, 2020, 46, 2538-2544.	2.3	17
45	Fundamental understanding of oxygen content in activated carbon on acetone adsorption desorption. Applied Surface Science, 2020, 508, 145211.	3.1	39
46	Insight into Steam Permeation through Perovskite Membrane via Transient Modeling. Membranes, 2020, $10,164.$	1.4	5
47	Superior threeâ€dimensional perovskite catalyst for catalytic oxidation. EcoMat, 2020, 2, e12044.	6.8	72
48	Controlling Segregation Behavior of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring. Metals, 2020, 10, 1129.	1.0	9
49	Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochemical Energy Reviews, 2020, 3, 690-729.	13.1	56
50	Rational design of ceramic hollow fibre catalyst, a new option for efficient removal of organic pollutants. IOP Conference Series: Earth and Environmental Science, 2020, 514, 052018.	0.2	1
51	A Novel Approach to Fabricate Membrane Electrode Assembly by Directly Coating the Nafion Ionomer on Catalyst Layers for Proton-Exchange Membrane Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 9803-9812.	3.2	37
52	Insights into the Adsorption of VOCs on a Cobalt-Adeninate Metal–Organic Framework (Bio-MOF-11). ACS Omega, 2020, 5, 15402-15408.	1.6	45
53	Enhancing Segregation Behavior of Impurity by Electromagnetic Stirring in the Solidification Process of Al-30Si Alloy. Metals, 2020, 10, 155.	1.0	11

 $\text{Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{BT /Overlock 10 Tf 5} \\ \text{Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{BT /Overlock 10 Tf 5} \\ \text{Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{BT /Overlock 10 Tf 5} \\ \text{Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{BT /Overlock 10 Tf 5} \\ \text{Experimental and theoretical exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{BT /Overlock 10 Tf 5} \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechanism through 2D graphene (not) Tj ETQq0 0 0 rg \\ \text{Experimental exploration of gas permeation mechan$

#	Article	IF	CITATIONS
55	A novel lanthanum strontium cobalt iron composite membrane synthesised through beneficial phase reaction for oxygen separation. Ceramics International, 2019, 45, 18924-18930.	2.3	21
56	Rational design via tailoring Mo content in La2Ni1-xMoxO4+ \hat{l} to improve oxygen permeation properties in CO2 atmosphere. Journal of Alloys and Compounds, 2019, 806, 153-162.	2.8	30
57	Novel La $\langle sub \rangle 0.7 \langle sub \rangle Sr \langle sub \rangle 0.3 \langle sub \rangle FeO \langle sub \rangle 3 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 b^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a$	2.2	9
58	Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. Journal of Membrane Science, 2019, 587, 117180.	4.1	42
59	Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/ glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Composites Part B: Engineering, 2019, 174, 107033.	5.9	69
60	One-step thermal processing to prepare BaCo0.95-Bi0.05Zr O3-δ membranes for oxygen separation. Ceramics International, 2019, 45, 12579-12585.	2.3	23
61	Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies, 2019, 20, e00108.	1.7	30
62	Enhanced CO selectivity for reverse waterâ€gas shift reaction using Ti 4 O 7 â€doped SrCe 0.9 Y 0.1 O 3â€Î´ hollow fibre membrane reactor. Canadian Journal of Chemical Engineering, 2019, 97, 1619-1626.	0.9	13
63	Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. Journal of Colloid and Interface Science, 2019, 545, 311-316.	5.0	16
64	Enhancing Oxygen Permeation via the Incorporation of Silver Inside Perovskite Oxide Membranes. Processes, 2019, 7, 199.	1.3	23
65	Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. International Journal of Hydrogen Energy, 2019, 44, 10627-10636.	3.8	34
66	Oxygen selective perovskite hollow fiber membrane bundles. Journal of Membrane Science, 2019, 581, 393-400.	4.1	37
67	Influence of nitric oxide on the oxygen permeation behavior of La0.6Sr0.4Co0.2Fe0.8O3â^Î perovskite membranes. Separation and Purification Technology, 2019, 210, 900-906.	3.9	33
68	Highly Stable Dualâ€Phase Membrane Based on Ce _{0.9} Gd _{0.1} O _{2â€"<i>δ</i>} â€"La ₂ NiO _{4+<i>δ</i>} for Oxygen Permeation under Pure CO ₂ Atmosphere. Energy Technology, 2019, 7, 1800701.	1.8	37
69	A new concept of Al-Si alloy with core-shell structure as phase change materials for thermal energy storage. Materials Letters, 2019, 237, 193-196.	1.3	24
70	Perovskite oxide and carbonate composite membrane for carbon dioxide transport. Materials Letters, 2019, 236, 329-333.	1.3	21
71	Novel SrCo _{0.9} W _{0.1} O _{3â€Î} Hollow Fiber Ceramic Membrane with Enhanced Oxygen Delivery Performance and CO ₂ Resistance Ability. ChemistrySelect, 2018, 3, 13700-13704.	0.7	9
72	Recent advances in nanostructured metal nitrides for water splitting. Journal of Materials Chemistry A, 2018, 6, 19912-19933.	5.2	392

#	Article	IF	CITATIONS
73	Efficient removal of organic and bacterial pollutants by Ag-La0.8Ca0.2Fe0.94O3-δ perovskite via catalytic peroxymonosulfate activation. Journal of Hazardous Materials, 2018, 356, 53-60.	6.5	67
74	Effects of AlB2/AlP phase and electromagnetic stirring on impurity B/P removal in the solidification process of Al-30Si alloy. Separation and Purification Technology, 2018, 207, 151-157.	3.9	13
75	Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3â^ hollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+ decoration. Chemical Engineering Research and Design, 2018, 134, 487-496.	2.7	29
76	A novel heterogeneous <scp>La_{0.8}Sr_{0.2}CoO_{3â^î}/(La_{0.5}Sr_{0.5})_{dualâ€phase membrane for oxygen separation. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2239.}</scp>	2C	00 _{4+δ<!--</td-->}
77	Enhancing O2-permeability and CO2-tolerance of La2NiO4+δ membrane via internal ionic-path. Materials Letters, 2018, 230, 161-165.	1.3	34
78	Effect of enhanced oxygen reduction activity on oxygen permeation of La0.6Sr0.4Co0.2Fe0.8O3â~Î membrane decorated by K2NiF4-type oxide. Journal of Alloys and Compounds, 2016, 654, 280-289.	2.8	47
79	Density functional theory calculations of atomic, electronic and thermodynamic properties of cubic LaCoO3and La1â^'xSrxCoO3surfaces. RSC Advances, 2015, 5, 760-769.	1.7	43
80	The effect of microstructure and surface decoration with K ₂ NiF ₄ -type oxide upon the oxygen permeability of perovskite-type La _{0.7} Sr _{0.3} FeO _{3â^Î<slb>hollow fiber membranes. RSC Advances, 2015, 5, 88602-88611.</slb>}	1.7	25