Vladyslav Moskalenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7622104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low temperature peculiarities of plastic deformation in titanium and its alloys. Cryogenics, 1980, 20, 503-508.	0.9	46
2	Cryomechanically obtained nanocrystalline titanium: microstructure and mechanical properties. Low Temperature Physics, 2009, 35, 905-907.	0.2	46
3	Barrier parameters and statistics controlling the plasticity of Ti‒O solid solutions in the temperature range 20–550 K. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1994, 70, 423-438.	0.8	36
4	Fundamentals of titanium nanocrystalline structure creation by cryomechanical grain fragmentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 707-713.	2.6	24
5	Dispersed barrier hardening and thermally activated deformation in α-titanium. Materials Science and Engineering, 1974, 16, 269-276.	0.1	19
6	The role of Peierls relief in the low-temperature plasticity of pure αâ€ T i. Low Temperature Physics, 2005, 31, 907-914.	0.2	19
7	Low-temperature plastic deformation and strain-hardening of nanocrystalline titanium. Low Temperature Physics, 2014, 40, 837-845.	0.2	18
8	Micromechanical properties of nanocrystalline titanium obtained by cryorolling. Low Temperature Physics, 2010, 36, 645-652.	0.2	16
9	Mechanical properties and structural features of nanocrystalline titanium produced by cryorolling. Physics of the Solid State, 2014, 56, 1590-1596.	0.2	16
10	The Theory of Superconductors with Overlapping Energy Bands. Uspekhi Fizicheskikh Nauk, 1974, 17, 450-451.	0.3	15
11	Staged work hardening of polycrystalline titanium at low temperatures and its relation to substructure evolution. Low Temperature Physics, 2002, 28, 935-941.	0.2	12
12	Quality of surface treatment and plastic deformation of titanium alloys at 2.5 to 293 K. Cryogenics, 1989, 29, 1002-1005.	0.9	11
13	Micromechanical properties of VT1-0 titanium cryorolled to various degrees of strain. Low Temperature Physics, 2015, 41, 649-658.	0.2	10
14	Correlation between substructure and mechanical properties of α-Ti at varying deformation temperatures 4.2–373 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 327, 138-143.	2.6	9
15	Structural homogeneity of nanocrystalline VT1-0 titanium. Low-temperature micromechanical properties. Low Temperature Physics, 2012, 38, 980-988.	0.2	9
16	Investigation of titanium nanostructure deformed at low temperatures. Low Temperature Physics, 2011, 37, 1042-1047.	0.2	8
17	Stability of the dislocation substructure of α-titanium against deformation temperature variation in the range 4.2–293 K. Acta Metallurgica Et Materialia, 1994, 42, 2603-2607.	1.9	7
18	X-ray parameters of a nanocrystalline titanium microstructure, obtained via cryodeformation. Low Temperature Physics, 2016, 42, 1175-1180.	0.2	7

#	Article	IF	CITATIONS
19	Observation of glass-like low-temperature anomalies in the acoustic properties of nanostructured metals. Low Temperature Physics, 2013, 39, 1078-1089.	0.2	6
20	Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77–300 K). Low Temperature Physics, 2018, 44, 73-80.	0.2	5
21	Instability of plastic deformation of nanocrystalline titanium at low temperatures. Low Temperature Physics, 2017, 43, 1122-1124.	0.2	4
22	Low-Temperature feature of grain-boundary hardening of nanocrystalline titanium. Low Temperature Physics, 2019, 45, 811-819.	0.2	4
23	Dislocation structure and fatigue crack growth in titanium alloy VT5-1ct at temperatures of 293-11 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 125-131.	2.6	3
24	Microstructure anisotropy of nanocrystalline titanium produced by cryomechanical grain fragmentation. Low Temperature Physics, 2018, 44, 444-450.	0.2	3
25	Substructure effect on low temperature plasticity of tungsten-rhenium alloys. Scripta Metallurgica, 1983, 17, 751-754.	1.2	2
26	Fatigue-induced dislocation structure of titanium alloy VT5-1ct at temperatures of 293-11K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 165, 117-124.	2.6	2
27	Anisotropy of the yield strength and structural parameters of nanocrystalline titanium obtained by cryodeformation. Low Temperature Physics, 2017, 43, 1427-1431.	0.2	2
28	Kinetics of low-temperature plasticity of nanocrystalline titanium. Low Temperature Physics, 2020, 46, 646-649.	0.2	2
29	Characteristics of plastic deformation of titanium at low temperatures. Metal Science and Heat Treatment, 1967, 8, 830-833.	0.2	1
30	An apparatus for determining Young's modulus of metals and alloys in the temperature range 4·2 to 300 K. Cryogenics, 1969, 9, 283-285.	0.9	1
31	Strength and ductility of titanium alloys at low temperatures. Metal Science and Heat Treatment, 1970, 12, 464-466.	0.2	1
32	An apparatus for metallographic studies between 4.2 and 300 K. Cryogenics, 1972, 12, 134-135.	0.9	1
33	Thermally activated process in deformed alpha titanium. European Physical Journal D, 1988, 38, 491-493.	0.4	1
34	Thermal stability of nanocrystalline and ultrafine-grained titanium created by cryomechanical fragmentation. Low Temperature Physics, 2020, 46, 951-957.	0.2	1
35	A study of corrosive-chemical properties and biocompatibility of submicrocrystalline titanium of BT1-0 grade. Ortopediiï,aï,i, Travmatologiiï,aï,i l Protezirovanie, 2011, .	0.0	0
36	THE LATTICE PARAMETERS AND RESIDUAL STRESSES IN BULK NANOCRYSTALLINE AND ULTRAFINE-GRAINED TITANIUM. East European Journal of Physics, 2017, , .	0.1	0