Matthew Kirkham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7621994/publications.pdf Version: 2024-02-01

ΜΑΤΤΗΓΙΜ ΚΙΟΚΗΛΜ

#	Article	IF	CITATIONS
1	CUBIC-f: An optimized clearing method for cell tracing and evaluation of neurite density in the salamander brain. Journal of Neuroscience Methods, 2021, 348, 109002.	1.3	8
2	Reprint of: A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochemical and Biophysical Research Communications, 2018, 499, 136-142.	1.0	5
3	A chemical screen identifies trifluoperazine as an inhibitor of glioblastoma growth. Biochemical and Biophysical Research Communications, 2017, 494, 477-483.	1.0	22
4	Husbandry of Spanish Ribbed Newts (Pleurodeles waltl). Methods in Molecular Biology, 2015, 1290, 47-70.	0.4	29
5	Studying Newt Brain Regeneration Following Subtype Specific Neuronal Ablation. Methods in Molecular Biology, 2015, 1290, 91-99.	0.4	9
6	Progenitor Cell Dynamics in the Newt Telencephalon during Homeostasis and Neuronal Regeneration. Stem Cell Reports, 2014, 2, 507-519.	2.3	45
7	A reference transcriptome and inferred proteome for the salamander Notophthalmus viridescens. Experimental Cell Research, 2013, 319, 1187-1197.	1.2	49
8	Microglia activation during neuroregeneration in the adult vertebrate brain. Neuroscience Letters, 2011, 497, 11-16.	1.0	22
9	Dopamine Controls Neurogenesis in the Adult Salamander Midbrain in Homeostasis and during Regeneration of Dopamine Neurons. Cell Stem Cell, 2011, 8, 426-433.	5.2	76
10	Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development (Cambridge), 2010, 137, 4127-4134.	1.2	90
11	Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. Journal of Cell Biology, 2010, 190, 675-691.	2.3	263
12	Not lost in translation. Seminars in Cell and Developmental Biology, 2009, 20, 691-696.	2.3	16
13	PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function. Cell, 2008, 132, 113-124.	13.5	647
14	Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 2008, 121, 2075-2086.	1.2	110
15	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 273-286.	1.9	253
16	Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 350-363.	1.9	118
17	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	2.3	385
18	SAS-4 Is a C. elegans Centriolar Protein that Controls Centrosome Size. Cell, 2003, 112, 575-587.	13.5	294

MATTHEW KIRKHAM

#	Article	IF	CITATIONS
19	The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is Î ³ -tubulin dependent. Journal of Cell Biology, 2002, 157, 591-602.	2.3	213
20	zyg-8, a Gene Required for Spindle Positioning in C. elegans, Encodes a Doublecortin-Related Kinase that Promotes Microtubule Assembly. Developmental Cell, 2001, 1, 363-375.	3.1	98
21	Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. Journal of Cell Biology, 2001, 155, 1109-1116.	2.3	395
22	Functional Analysis of Kinetochore Assembly in Caenorhabditis elegans. Journal of Cell Biology, 2001, 153, 1209-1226.	2.3	416
23	Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 2000, 408, 331-336.	13.7	854
24	Cytoplasmic Dynein Is Required for Distinct Aspects of Mtoc Positioning, Including Centrosome Separation, in the One Cell Stage Caenorhabditis elegans Embryo. Journal of Cell Biology, 1999, 147, 135-150.	2.3	419