Ofir Levy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7621791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variable impacts on reproductive energetics may render oviparous squamates more vulnerable to climate warming than viviparous species. Ecography, 2022, 2022, .	2.1	3
2	Rocks and Vegetation Cover Improve Body Condition of Desert Lizards during Both Summer and Winter. Integrative and Comparative Biology, 2022, 62, 1031-1041.	0.9	5
3	Three questions about the ecoâ€physiology of overwintering underground. Ecology Letters, 2021, 24, 170-185.	3.0	42
4	Latitudinal embryonic thermal tolerance and plasticity shape the vulnerability of oviparous species to climate change. Ecological Monographs, 2021, 91, e01468.	2.4	22
5	Modeling escape success in terrestrial predator–prey interactions. Integrative and Comparative Biology, 2020, 60, 497-508.	0.9	10
6	Habitat features and performance interact to determine the outcomes of terrestrial predator–prey pursuits. Journal of Animal Ecology, 2020, 89, 2958-2971.	1.3	16
7	Fundamental Flaws with the Fundamental Niche. Integrative and Comparative Biology, 2019, 59, 1038-1048.	0.9	17
8	Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecological Monographs, 2019, 89, e01334.	2.4	79
9	Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change. Ecology Letters, 2018, 21, 104-116.	3.0	48
10	Diminishing returns limit energetic costs of climate change. Ecology, 2017, 98, 1217-1228.	1.5	22
11	Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Functional Ecology, 2017, 31, 856-865.	1.7	66
12	Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming. Global Change Biology, 2017, 23, 1075-1084.	4.2	46
13	Ontogeny constrains phenology: opportunities for activity and reproduction interact to dictate potential phenologies in a changing climate. Ecology Letters, 2016, 19, 620-628.	3.0	51
14	Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent. American Naturalist, 2016, 188, 205-218.	1.0	42
15	A dynamically downscaled projection of past and future microclimates. Ecology, 2016, 97, 1888-1888.	1.5	26
16	Resolving the life cycle alters expected impacts of climate change. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150837.	1.2	123
17	Approaches to advance scientific understanding of macrosystems ecology. Frontiers in Ecology and the Environment, 2014, 12, 15-23.	1.9	57
18	Foraging sequence, energy intake and torpor: an individualâ€based field study of energy balancing in desert golden spiny mice. Ecology Letters, 2012, 15, 1240-1248.	3.0	21

OFIR LEVY

#	Article	IF	CITATIONS
19	Biophysical Modeling of the Temporal Niche: From First Principles to the Evolution of Activity Patterns. American Naturalist, 2012, 179, 794-804.	1.0	33
20	Light Masking in the Field: An Experiment with Nocturnal and Diurnal Spiny Mice Under Semi-natural Field Conditions. Chronobiology International, 2011, 28, 70-75.	0.9	25
21	Adaptive Thermoregulation in Colden Spiny Mice: The Influence of Season and Food Availability on Body Temperature. Physiological and Biochemical Zoology, 2011, 84, 175-184.	0.6	44
22	The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice. PLoS ONE, 2011, 6, e23446.	1.1	25
23	Interspecific Competition and Torpor in Golden Spiny Mice: Two Sides of the Energy-Acquisition Coin. Integrative and Comparative Biology, 2011, 51, 441-448.	0.9	29
24	The Relationship between the Golden Spiny Mouse Circadian System and Its Diurnal Activity: An Experimental Field Enclosures and Laboratory Study. Chronobiology International, 2007, 24, 599-613.	0.9	73