
Konstantinos Georgarakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7621144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cu-based metallic glass particle additions to significantly improve overall compressive properties of an Al alloy. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1551-1557.	3.8	70
2	Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability. Journal of Materials Research, 2011, 26, 539-546.	1.2	69
3	A magnesium alloy matrix composite reinforced with metallic glass. Composites Science and Technology, 2009, 69, 2734-2736.	3.8	61
4	On the mechanical properties of TiNb based alloys. Journal of Alloys and Compounds, 2013, 571, 25-30.	2.8	59
5	Strong and light metal matrix composites with metallic glass particulate reinforcement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 325-330.	2.6	56
6	Atomic structure of Zr–Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission. Applied Physics Letters, 2009, 94, 191912.	1.5	55
7	Variations in atomic structural features of a supercooled Pd–Ni–Cu–P glass forming liquid during in situ vitrification. Acta Materialia, 2011, 59, 708-716.	3.8	47
8	Probing the structure of a liquid metal during vitrification. Acta Materialia, 2015, 87, 174-186.	3.8	38
9	Atomic structure of Zr–Cu–Al and Zr–Ni–Al amorphous alloys. Journal of Alloys and Compounds, 2009, 471, 70-73.	2.8	34
10	Sliding wear behaviour of Zinc–Nickel alloy electrodeposits. Tribology International, 2003, 36, 619-623.	3.0	31
11	Crystallization during Bending of a Pd-Based Metallic Glass Detected by X-Ray Microscopy. Physical Review Letters, 2012, 109, 085501.	2.9	31
12	The influence of grain size on the sliding wear behaviour of zinc. Materials Letters, 2006, 60, 133-136.	1.3	27
13	Shaping of metallic glasses by stress-annealing without thermal embrittlement. Acta Materialia, 2011, 59, 3817-3824.	3.8	27
14	Nanoporous silver for electrocatalysis application in alkaline fuel cells. Materials and Design, 2016, 111, 528-536.	3.3	27
15	Local atomic structure of Zr–Cu and Zr–Cu–Al amorphous alloys investigated by EXAFS method. Journal of Alloys and Compounds, 2011, 509, S34-S37.	2.8	26
16	Sliding wear behaviour of zinc–cobalt alloy electrodeposits. Journal of Materials Processing Technology, 2005, 160, 234-244.	3.1	25
17	Ni- and Cu-free Ti-based metallic glasses with potential biomedical application. Intermetallics, 2015, 63, 86-96.	1.8	25
18	Real-space structural studies of Cu–Zr–Ti glassy alloy. Journal of Alloys and Compounds, 2008, 466, 106-110.	2.8	23

#	Article	IF	CITATIONS
19	The role of Sn doping in the β-type Ti–25at%Nb alloys: Experiment and ab initio calculations. Journal of Alloys and Compounds, 2014, 615, S676-S679.	2.8	23
20	Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140165.	2.6	21
21	Effect of Ag addition on local structure of Cu–Zr glassy alloy. Journal of Materials Research, 2009, 24, 274-278.	1.2	20
22	In-situ TEM study of the crystallization sequence in a gold-based metallic glass. Acta Materialia, 2020, 196, 52-60.	3.8	19
23	AlNiY chill-zone alloys with good mechanical properties. Journal of Alloys and Compounds, 2009, 477, 346-349.	2.8	17
24	Chill zone copper with the strength of stainless steel and tailorable color. Acta Materialia, 2008, 56, 1830-1839.	3.8	16
25	Atomic structure changes and phase transformation behavior in Pd–Si bulk glass-forming alloy. Intermetallics, 2012, 20, 135-140.	1.8	15
26	Chill-zone aluminum alloys with GPa strength and good plasticity. Journal of Materials Research, 2009, 24, 1513-1521.	1.2	14
27	Formation of TiC-Cu nanocomposites by a reaction between Ti25Cu75 melt-spun alloy and carbon. Materials Letters, 2019, 235, 104-106.	1.3	14
28	Progress in aluminium and magnesium matrix composites obtained by spark plasma, microwave and induction sintering. International Materials Reviews, 2023, 68, 225-246.	9.4	14
29	The effect of hydrogen charging on the mechanical behaviour of α-brass. Journal of Alloys and Compounds, 2005, 392, 159-164.	2.8	13
30	Influence of fluxing in the preparation of bulk Fe-based glassy alloys. Journal of Alloys and Compounds, 2009, 483, 243-246.	2.8	13
31	In situ X-ray diffraction study of the phase transformation in the non-stoichiometric intermetallic compound Ti3Sn. Journal of Alloys and Compounds, 2014, 582, 360-363.	2.8	12
32	Nanoporous titanium obtained from a spinodally decomposed Ti alloy. Microporous and Mesoporous Materials, 2016, 222, 23-26.	2.2	11
33	Structural changes in liquid Fe and Fe–B alloy on cooling. Journal of Molecular Liquids, 2015, 209, 233-238.	2.3	10
34	A novel operando approach to analyze the structural evolution of metallic materials during friction with application of synchrotron radiation. Acta Materialia, 2020, 196, 355-369.	3.8	10
35	The Benefit of the Glassy State of Reinforcing Particles for the Densification of Aluminum Matrix Composites. Journal of Composites Science, 2022, 6, 135.	1.4	10
36	Investigation of viscosity and crystallization in supercooled-liquid region of Zr-based glassy alloys. Journal of Non-Crystalline Solids, 2012, 358, 150-154.	1.5	9

#	Article	IF	CITATIONS
37	Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature. Scientific Reports, 2018, 8, 16317.	1.6	9
38	Design Optimisation of the Feeding System of a Novel Counter-Gravity Casting Process. Metals, 2018, 8, 817.	1.0	9
39	Room temperature strain recovery into non-stoichiometric intermetallic compound Ti 3 Sn. Journal of Alloys and Compounds, 2014, 617, 34-38.	2.8	8
40	An atomistic study of the structural changes in a Zr–Cu–Ni–Al glass-forming liquid on vitrification monitored in-situ by X-ray diffraction and molecular dynamics simulation. Intermetallics, 2020, 122, 106795.	1.8	8
41	Microstructure and Mechanical Properties of Composites Obtained by Spark Plasma Sintering of Al–Fe66Cr10Nb5B19 Metallic Class Powder Mixtures. Metals, 2021, 11, 1457.	1.0	8
42	Core–Shell Particle Reinforcements—A New Trend in the Design and Development of Metal Matrix Composites. Materials, 2022, 15, 2629.	1.3	8
43	Tensile properties of Zr70Ni16Cu6Al8 BMG at room and cryogenic temperatures. Journal of Alloys and Compounds, 2018, 742, 952-957.	2.8	7
44	Devitrification of thin film Cu–Zr metallic glass via ultrashort pulsed laser annealing. Journal of Alloys and Compounds, 2021, 887, 161437.	2.8	7
45	A synchrotron X-ray diffraction study of hydrogen storage and enhanced sorption kinetics in a mini-tank of Mg with crystalline and amorphous catalytic particle additions. Journal of Alloys and Compounds, 2012, 540, 57-61.	2.8	6
46	Comparative analysis of the structure of palladium-based bulk metallic glasses prepared by treatment of melts with flux. Physics of the Solid State, 2013, 55, 1985-1990.	0.2	6
47	Experimental and Theoretical Advances in Amorphous Alloys. Advances in Materials Science and Engineering, 2014, 2014, 1-2.	1.0	6
48	Real time synchrotron radiation studies on metallic glass (Zr0.55Al0.1Ni0.05Cu0.3)99Y1 after cold rolling. Intermetallics, 2009, 17, 231-234.	1.8	5
49	Kinetics of isothermal structural relaxation in metallic glasses measured by real-time diffraction using synchrotron radiation. Philosophical Magazine Letters, 2011, 91, 122-133.	0.5	5
50	In-situ structural identification of Zr3Al2 type metastable phase during crystallization of a Zr-based MG. Journal of Non-Crystalline Solids, 2016, 452, 30-34.	1.5	5
51	Glass formation in the Nb–Si binary system. Journal of Alloys and Compounds, 2010, 504, S14-S17.	2.8	4
52	Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses. Nanoscale Research Letters, 2011, 6, 512.	3.1	4
53	Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge. Applied Physics A: Materials Science and Processing, 2015, 120, 1565-1572.	1.1	4
54	On the impact of global interactions on the structure of metallic glasses. Journal of Alloys and Compounds, 2019, 782, 496-505.	2.8	4

#	Article	IF	CITATIONS
55	Fabrication of nanoporous copper surface by leaching of chill-zone Cu–Zr–Hf alloys. Scripta Materialia, 2015, 104, 64-66.	2.6	2
56	Investigation on the mechanically-induced nanocrystallization in metallic glasses. Journal of Alloys and Compounds, 2021, 859, 157864.	2.8	2
57	On a new electromechanical switch using the reversible wavy elastic response of metallic glass ribbons. Comptes Rendus - Mecanique, 2017, 345, 797-804.	2.1	1
58	The effect of Ni or Co additions on the structure of Zr60Cu30Al10 bulk metallic glass revealed by high-energy synchrotron radiation. Materials Today Communications, 2022, , 103531.	0.9	1
59	Oxide Ceramic Matrix Composite Materials for Aero-Engine Applications: A Literature Review. Advances in Transdisciplinary Engineering, 2021, , .	0.1	0