
Richard Scott Poethig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The carbon economics of vegetative phase change. Plant, Cell and Environment, 2022, 45, 1286-1297.	2.8	6
2	The genetic basis of natural variation in the timing of vegetative phase change in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2022, 149, .	1.2	8
3	MicroRNA156â€mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. New Phytologist, 2021, 231, 1008-1022.	3.5	28
4	Vegetative phase change in <i>Populus tremula</i> Â×Â <i>alba</i> . New Phytologist, 2021, 231, 351-364.	3.5	29
5	Low light intensity delays vegetative phase change. Plant Physiology, 2021, 187, 1177-1188.	2.3	19
6	VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. PLoS Genetics, 2021, 17, e1009626.	1.5	18
7	Lonely at the top? Regulation of shoot apical meristem activity by intrinsic and extrinsic factors. Current Opinion in Plant Biology, 2020, 58, 17-24.	3.5	10
8	Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111931.	1.7	17
9	<i>ALTERED MERISTEM PROGRAM1</i> regulates leaf identity independent of miR156-mediated translational repression. Development (Cambridge), 2020, 147, .	1.2	7
10	Development and evolution of age-dependent defenses in ant-acacias. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15596-15601.	3.3	34
11	Role for the shoot apical meristem in the specification of juvenile leaf identity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10168-10177.	3.3	45
12	H2A.Z promotes the transcription of <i>MIR156A</i> and <i>MIR156C</i> in <i>Arabidopsis</i> by facilitating the deposition of H3K4me3. Development (Cambridge), 2018, 145, .	1.2	56
13	Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics, 2018, 14, e1007337.	1.5	161
14	Repression of miR156 by miR159 Regulates the Timing of the Juvenile-to-Adult Transition in Arabidopsis. Plant Cell, 2017, 29, 1293-1304.	3.1	144
15	Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006263.	1.5	477
16	Trichome patterning control involves TTG1 interaction with SPL transcription factors. Plant Molecular Biology, 2016, 92, 675-687.	2.0	35
17	lan Sussex: simple tools, clever experiments and new insights into plant development. Development (Cambridge), 2016, 143, 3224-3225.	1.2	1
18	Regulation of Vegetative Phase Change by SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA. Plant Physiology, 2016, 172, 2416-2428.	2.3	69

#	Article	IF	CITATIONS
19	The role of small RNAs in vegetative shoot development. Current Opinion in Plant Biology, 2016, 29, 64-72.	3.5	77
20	Epigenetic Regulation of Vegetative Phase Change in Arabidopsis. Plant Cell, 2016, 28, 28-41.	3.1	112
21	Traffic Lines: New Tools for Genetic Analysis in <i>Arabidopsis thaliana</i> . Genetics, 2015, 200, 35-45.	1.2	37
22	The <i>Arabidopsis</i> Mediator CDK8 module genes <i>CCT</i> (<i>MED12</i>) and <i>GCT</i> (<i>MED13</i>) are global regulators of developmental phase transitions. Development (Cambridge), 2014, 141, 4580-4589.	1.2	50
23	Genetic Control of Heterochrony in <i>Eucalyptus globulus</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1235-1245.	0.8	36
24	Vegetative Phase Change and Shoot Maturation in Plants. Current Topics in Developmental Biology, 2013, 105, 125-152.	1.0	234
25	3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4117-4122.	3.3	86
26	Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. ELife, 2013, 2, e00260.	2.8	295
27	Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 315-320.	3.3	163
28	MiRNA Control of Vegetative Phase Change in Trees. PLoS Genetics, 2011, 7, e1002012.	1.5	374
29	The effect of the floral repressor <i>FLC</i> on the timing and progression of vegetative phase change in <i>Arabidopsis</i> . Development (Cambridge), 2011, 138, 677-685.	1.2	77
30	Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development (Cambridge), 2011, 138, 245-249.	1.2	159
31	Binding of the Cyclophilin 40 Ortholog SQUINT to Hsp90 Protein Is Required for SQUINT Function in Arabidopsis. Journal of Biological Chemistry, 2011, 286, 38184-38189.	1.6	57
32	The MED12-MED13 module of Mediator regulates the timing of embryo patterning in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 113-122.	1.2	107
33	The Past, Present, and Future of Vegetative Phase Change. Plant Physiology, 2010, 154, 541-544.	2.3	124
34	Cyclophilin 40 is required for microRNA activity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5424-5429.	3.3	156
35	GAL4 GFP enhancer trap lines for analysis of stomatal guard cell development and gene expression. Journal of Experimental Botany, 2009, 60, 213-226.	2.4	82
36	The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell, 2009, 17, 268-278.	3.1	509

#	Article	IF	CITATIONS
37	The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell, 2009, 138, 750-759.	13.5	1,405
38	Small RNAs and developmental timing in plants. Current Opinion in Genetics and Development, 2009, 19, 374-378.	1.5	185
39	Criteria for Annotation of Plant MicroRNAs. Plant Cell, 2008, 20, 3186-3190.	3.1	1,158
40	KANADI1 regulates adaxial–abaxial polarity in <i>Arabidopsis</i> by directly repressing the transcription of <i>ASYMMETRIC LEAVES2</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16392-16397.	3.3	124
41	DICER-LIKE2 Plays a Primary Role in Transitive Silencing of Transgenes in Arabidopsis. PLoS ONE, 2008, 3, e1755.	1.1	154
42	Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology, 2007, 10, 503-511.	3.5	151
43	Time of day modulates low-temperature Ca2+signals in Arabidopsis. Plant Journal, 2006, 48, 962-973.	2.8	145
44	MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Research, 2006, 16, 1276-1288.	2.4	329
45	Genetic Interaction between the AS1–AS2 and RDR6–SGS3–AGO7 Pathways for Leaf Morphogenesis. Plant and Cell Physiology, 2006, 47, 853-863.	1.5	63
46	EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis. Development (Cambridge), 2006, 133, 1241-1252.	1.2	144
47	Temporal regulation of shoot development in Arabidopsis thalianaby miR156 and its target SPL3. Development (Cambridge), 2006, 133, 3539-3547.	1.2	1,002
48	Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development (Cambridge), 2006, 133, 2973-2981.	1.2	326
49	Time to grow up: the temporal role of smallRNAs in plants. Current Opinion in Plant Biology, 2005, 8, 548-552.	3.5	57
50	A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes and Development, 2005, 19, 2164-2175.	2.7	658
51	Nuclear processing and export of microRNAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3691-3696.	3.3	598
52	SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes and Development, 2004, 18, 2368-2379.	2.7	827
53	ReFUSing to Grow Up. Developmental Cell, 2004, 7, 288-289.	3.1	1
54	The Arabidopsis Heterochronic Gene ZIPPY Is an ARGONAUTE Family Member. Current Biology, 2003, 13, 1734-1739.	1.8	214

#	Article	IF	CITATIONS
55	miSSING LINKS: miRNAs and plant development. Current Opinion in Genetics and Development, 2003, 13, 372-378.	1.5	62
56	Phase Change and the Regulation of Developmental Timing in Plants. Science, 2003, 301, 334-336.	6.0	309
57	PAUSED Encodes the Arabidopsis Exportin-t Ortholog. Plant Physiology, 2003, 132, 2135-2143.	2.3	74
58	HASTY, theArabidopsisortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development (Cambridge), 2003, 130, 1493-1504.	1.2	249
59	The early phase change Gene in Maize. Plant Cell, 2002, 14, 133-147.	3.1	41
60	MicroRNAs: Something New Under the Sun. Current Biology, 2002, 12, R688-R690.	1.8	26
61	Transformation of shoots into roots in <i>Arabidopsis</i> embryos mutant at the <i>TOPLESS</i> locus. Development (Cambridge), 2002, 129, 2797-2806.	1.2	85
62	Genetic Evidence and the Origin of Maize. Latin American Antiquity, 2001, 12, 84-86.	0.3	39
63	KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411, 706-709.	13.7	540
64	Regulation of Vegetative Phase Change in Arabidopsis thaliana by Cyclophilin 40. Science, 2001, 291, 2405-2407.	6.0	132
65	Phase identity of the maize leaf is determined after leaf initiation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10631-10636.	3.3	46
66	THE SPECIFICATION OF LEAF IDENTITY DURING SHOOT DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1998, 14, 373-398.	4.0	153
67	Clonal analysis of leaf development in cotton. American Journal of Botany, 1998, 85, 315-321.	0.8	41
68	The Okra leaf shape mutation in cotton is active in all cell layers of the leaf. American Journal of Botany, 1998, 85, 322-327.	0.8	25
69	Leaf morphogenesis in flowering plants Plant Cell, 1997, 9, 1077-1087.	3.1	153
70	Mutations of Arabidopsis thaliana that transform leaves into cotyledons. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10209-10214.	3.3	86
71	The viviparous8 mutation delays vegetative phase change and accelerates the rate of seedling growth in maize. Plant Journal, 1997, 12, 769-779.	2.8	31
72	Heteroblastic Features of Leaf Anatomy in Maize and Their Genetic Regulation. International Journal of Plant Sciences, 1996, 157, 331-340.	0.6	72

RICHARD SCOTT POETHIG

#	Article	IF	CITATIONS
73	Shoot development in plants: time for a change. Trends in Genetics, 1995, 11, 263-268.	2.9	146
74	Gibberellins Promote Vegetative Phase Change and Reproductive Maturity in Maize. Plant Physiology, 1995, 108, 475-487.	2.3	137
75	Phase Change and the Regulation of Shoot Morphogenesis in Plants. Science, 1990, 250, 923-930.	6.0	576
76	Genetic mosaics and cell lineage analysis in plants. Trends in Genetics, 1989, 5, 273-277.	2.9	166
77	Cell-lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta, 1988, 175, 13-22.	1.6	154
78	A non–cell–autonomous mutation regulating juvenility in maize. Nature, 1988, 336, 82-83.	13.7	49
79	CLONAL ANALYSIS OF CELL LINEAGE PATTERNS IN PLANT DEVELOPMENT. American Journal of Botany, 1987, 74, 581-594.	0.8	117
80	CLONAL ANALYSIS OF CELL LINEAGE PATTERNS IN PLANT DEVELOPMENT. , 1987, 74, 581.		84
81	Cell lineage patterns in maize embryogenesis: A clonal analysis. Developmental Biology, 1986, 117, 392-404.	0.9	120
82	The developmental morphology and growth dynamics of the tobacco leaf. Planta, 1985, 165, 158-169.	1.6	181
83	The cellular parameters of leaf development in tobacco: a clonal analysis. Planta, 1985, 165, 170-184.	1.6	220