Alessandra Cremasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620626/publications.pdf

Version: 2024-02-01

26 papers 807

932766 10 h-index 713013 21 g-index

26 all docs

26 docs citations

26 times ranked 937 citing authors

#	Article	IF	CITATIONS
1	Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochimica Acta, 2008, 53, 4867-4874.	2.6	145
2	Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochimica Acta, 2010, 55, 759-770.	2.6	125
3	Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C, 2011, 31, 833-839.	3.8	112
4	Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti–Nb alloys. Materials Characterization, 2011, 62, 673-680.	1.9	87
5	Ti–Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 31-38.	1.5	78
6	Effects of composition and heat treatment on the mechanical behavior of Ti–Cu alloys. Materials & Design, 2014, 55, 1006-1013.	5.1	77
7	The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials. Materials Characterization, 2015, 110, 5-13.	1.9	30
8	Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3213-3226.	1.1	30
9	In situ characterization of the effects of Nb and Sn on the anatase–rutile transition in TiO2 nanotubes using high-temperature X-ray diffraction. Applied Surface Science, 2014, 307, 372-381.	3.1	21
10	Anodization growth of TiO2 nanotubes on Ti–35Nb–7Zr–5Ta alloy: effects of anodization time, strain hardening, and crystallographic texture. Journal of Materials Science, 2019, 54, 13724-13739.	1.7	12
11	Effects of Cooling Rate and Sn Addition on the Microstructure of Ti-Nb-Sn Alloys. Solid State Phenomena, 0, 172-174, 190-195.	0.3	11
12	Effects of Aging Heat Treatment on the Microstructure of Ti-Nb and Ti-Nb-Sn Alloys Employed as Biomaterials. Advanced Materials Research, 0, 324, 61-64.	0.3	9
13	Influence of heating rate and aging temperature on omega and alpha phase precipitation in Ti 35Nb alloy. Materials Characterization, 2018, 145, 268-276.	1.9	9
14	A novel Ag doping Ti alloys route: Formation and antibacterial effect of the TiO2 nanotubes. Materials Chemistry and Physics, 2021, 261, 124192.	2.0	9
15	Crystalline phase of TiO2 nanotube arrays on Ti–35Nb–4Zr alloy: Surface roughness, electrochemical behavior and cellular response. Ceramics International, 2022, 48, 5154-5161.	2.3	9
16	Effects of the microstructural characteristics of a metastable \hat{l}^2 Ti alloy on its corrosion fatigue properties. International Journal of Fatigue, 2013, 54, 32-37.	2.8	8
17	Self-organized TiO2 nanotube layer on Ti–Nb–Zr alloys: growth, characterization, and effect on corrosion behavior. Journal of Applied Electrochemistry, 2019, 49, 1079-1089.	1.5	8
18	Effect of Heat Treatments on Mechanical Properties and Fatigue Resistance of Ti-35Nb Alloy Used as Biomaterial. Materials Science Forum, 0, 636-637, 68-75.	0.3	6

#	Article	IF	CITATIONS
19	Effects of microwave heating in nanolaminated Nb2GeC synthesis. Ceramics International, 2016, 42, 16343-16348.	2.3	5
20	The Effect of Cooling Rate on the Microstructure and Hardness of As-Cast Co-28Cr-6Mo Alloy Used as Biomedical Knee Implant. International Journal of Metalcasting, 2022, 16, 2187-2198.	1.5	5
21	Application of coupled substrate aging and TiO2 nanotube crystallization heat treatments in cold-rolled Ti–Nb–Sn alloys. Journal of Materials Science, 2016, 51, 6389-6399.	1.7	4
22	Using thermochemical treatment for facilitating apatite formation on Ti-Nb-Sn alloys. Journal of Materials Science, 2020, 55, 4395-4407.	1.7	3
23	Self-organized TiO2 nanotubes on Ti-Nb-Fe alloys for biomedical applications: Synthesis and characterization. Electrochemistry Communications, 2022, 138, 107280.	2.3	3
24	Isothermal omega Assisted Alpha Phase Precipitation and Microstructural Evolution of an Aged Ti-30Nb-3Fe Alloy. Materials Research, 2020, 23, .	0.6	1
25	Obtenção de ligas Ti-30Nb-3Fe revestidas com nanotubos de TiO2 de caracterÃsticas funcionais. , 0, , .		0
26	Evaluation of Mechanical and Corrosion Properties of Friction Stir-Welded AA6005-T6. Materials Research, 0, 25, .	0.6	0