Vincenzo Zara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. International Journal of Molecular Sciences, 2022, 23, 2542.	4.1	39
2	Multiple roles played by the mitochondrial citrate carrier in cellular metabolism and physiology. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	13
3	Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reproductive Toxicology, 2021, 99, 48-55.	2.9	28
4	Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants, 2021, 10, 217.	5.1	19
5	Physical Activity and Male Reproductive Function: A New Role for Gamete Mitochondria. Exercise and Sport Sciences Reviews, 2021, 49, 99-106.	3.0	4
6	The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129854.	2.4	9
7	The future challenges of scientific and technical higher education. Tuning Journal for Higher Education, 2021, 8, 85-117.	0.5	5
8	Mitochondrial Carriers and Substrates Transport Network: A Lesson from Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2021, 22, 8496.	4.1	9
9	Crosstalk between mitochondrial metabolism and oxidoreductive homeostasis: a new perspective for understanding the effects of bioactive dietary compounds. Nutrition Research Reviews, 2020, 33, 90-101.	4.1	13
10	Sperm selection in assisted reproduction: A review of established methods and cutting-edge possibilities. Biotechnology Advances, 2020, 40, 107498.	11.7	52
11	Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. International Journal of Molecular Sciences, 2020, 21, 6052.	4.1	16
12	Centrifugation Force and Time Alter CASA Parameters and Oxidative Status of Cryopreserved Stallion Sperm. Biology, 2020, 9, 22.	2.8	7
13	<i>Prunus Mahaleb</i> Fruit Extract Prevents Chemically Induced Colitis and Enhances Mitochondrial Oxidative Metabolism via the Activation of the Nrf2 Pathway. Molecular Nutrition and Food Research, 2019, 63, e1900350.	3.3	10
14	Comparative Proteomic Analysis of Proteins Involved in Bioenergetics Pathways Associated with Human Sperm Motility. International Journal of Molecular Sciences, 2019, 20, 3000.	4.1	39
15	Italian university rectors for health and environment: the U4ALL initiative. Lancet, The, 2019, 394, 1319.	13.7	1
16	Seminal VOCs Analysis Investigating Sperm Quality Decline—New Studies to Improve Male Fertility Contrasting Population Ageing. Lecture Notes in Electrical Engineering, 2019, , 501-508.	0.4	0
17	Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FEBS Journal, 2019, 286, 688-709.	4.7	69
18	Obesity and Male Infertility: Role of Fatty Acids in the Modulation of Sperm Energetic Metabolism. European Journal of Lipid Science and Technology, 2018, 120, 1700451.	1.5	10

#	Article	IF	CITATIONS
19	HS-SPME-GC-MS metabolomics approach for sperm quality evaluation by semen volatile organic compounds (VOCs) analysis. Biomedical Physics and Engineering Express, 2018, 5, 015006.	1.2	21
20	Mimivirus-Encoded Nucleotide Translocator VMC1 Targets the Mitochondrial Inner Membrane. Journal of Molecular Biology, 2018, 430, 5233-5245.	4.2	6
21	Dietary fatty acids influence sperm quality and function. Andrology, 2017, 5, 423-430.	3.5	46
22	Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential. Scientific Reports, 2017, 7, 17931.	3.3	39
23	Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World Journal of Gastroenterology, 2017, 23, 4146.	3.3	136
24	Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?. Biochemical and Biophysical Research Communications, 2016, 473, 1133-1138.	2.1	22
25	Metabolic response to glatiramer acetate therapy in multiple sclerosis patients. BBA Clinical, 2016, 6, 131-137.	4.1	17
26	Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet. BioMed Research International, 2015, 2015, 1-11.	1.9	25
27	Varicocele Negatively Affects Sperm Mitochondrial Respiration. Urology, 2015, 86, 735-739.	1.0	21
28	The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 987-995.	4.1	18
29	Bioenergetics profile of CD4 + T cells in relapsing remitting multiple sclerosis subjects. Journal of Biotechnology, 2015, 202, 31-39.	3.8	41
30	Modulation of hepatic steatosis by dietary fatty acids. World Journal of Gastroenterology, 2014, 20, 1746.	3.3	155
31	Bioenergetics of Mammalian Sperm Capacitation. BioMed Research International, 2014, 2014, 1-8.	1.9	113
32	Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats. European Journal of Nutrition, 2014, 53, 1103-1114.	3.9	43
33	Can a marine pest reduce the nutritional value of Mediterranean fish flesh?. Marine Biology, 2014, 161, 1275-1283.	1.5	27
34	Dietary Fat and Hepatic Lipogenesis: Mitochondrial Citrate Carrier as a Sensor of Metabolic Changes1. Advances in Nutrition, 2014, 5, 217-225.	6.4	24
35	Modulation of the Respiratory Supercomplexes in Yeast. Journal of Biological Chemistry, 2014, 289, 6133-6141.	3.4	39
36	Oxidative Stress Negatively Affects Human Sperm Mitochondrial Respiration. Urology, 2013, 82, 78-83.	1.0	78

#	Article	IF	CITATIONS
37	Biogenesis of mitochondrial carrier proteins: Molecular mechanisms of import into mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 494-502.	4.1	56
38	Mitochondrial Respiratory Efficiency is Positively Correlated With Human Sperm Motility. Urology, 2012, 79, 809-814.	1.0	61
39	A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats. PLoS ONE, 2012, 7, e38797.	2.5	75
40	The role of mitochondria in energy production for human sperm motility. Journal of Developmental and Physical Disabilities, 2012, 35, 109-124.	3.6	301
41	A krill oil supplemented diet reduces the activities of the mitochondrial tricarboxylate carrier and of the cytosolic lipogenic enzymes in rats. Journal of Animal Physiology and Animal Nutrition, 2012, 96, 295-306.	2.2	42
42	Evaluation of mitochondrial respiratory efficiency during in vitro capacitation of human spermatozoa. Journal of Developmental and Physical Disabilities, 2011, 34, 247-255.	3.6	47
43	Bcs1p can rescue a large and productive cytochrome bc1 complex assembly intermediate in the inner membrane of yeast mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 91-101.	4.1	15
44	The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome Complex of Yeast Mitochondria. Bioinorganic Chemistry and Applications, 2011, 2011, 1-9.	4.1	22
45	Biogenesis of the yeast cytochrome bc1 complex. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 89-96.	4.1	81
46	Evidence that the assembly of the yeast cytochrome <i>bc</i> ₁ complex involves the formation of a large core structure in the inner mitochondrial membrane. FEBS Journal, 2009, 276, 1900-1914.	4.7	56
47	Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90. Biochemical Journal, 2009, 419, 369-375.	3.7	55
48	Oxygen uptake by mitochondria in demembranated human spermatozoa: a reliable tool for the evaluation of sperm respiratory efficiency. Journal of Developmental and Physical Disabilities, 2008, 31, 337-345.	3.6	62
49	Dietary Combination of Conjugated Linoleic Acid (CLA) and Pine Nut Oil Prevents CLA-Induced Fatty Liver in Mice. Journal of Agricultural and Food Chemistry, 2008, 56, 8148-8158.	5.2	29
50	Olive Oil Increases the Hepatic Triacylglycerol Content in Mice by a Distinct Influence on the Synthesis and Oxidation of Fatty Acids. Bioscience, Biotechnology and Biochemistry, 2008, 72, 62-69.	1.3	44
51	A protein structure prediction service in the ProGenGrid system. Studies in Health Technology and Informatics, 2008, 138, 135-46.	0.3	0
52	Biogenesis of yeast dicarboxylate carrier: the carrier signature facilitates translocation across the mitochondrial outer membrane. Journal of Cell Science, 2007, 120, 4099-4106.	2.0	12
53	Biogenesis of Eel Liver Citrate Carrier (CIC): Negative Charges Can Substitute for Positive Charges in the Presequence. Journal of Molecular Biology, 2007, 365, 958-967.	4.2	23
54	Identification and characterization of cytochrome <i>bc</i> sub>1 subcomplexes in mitochondria from yeast with single and double deletions of genes encoding cytochrome <i>bc</i> sub>1 subunits. FEBS Journal, 2007, 274, 4526-4539.	4.7	63

#	Article	IF	CITATIONS
55	Conjugated linoleic acid and hepatic lipogenesis in mouse: role of the mitochondrial citrate carrier. Journal of Lipid Research, 2006, 47, 1994-2003.	4.2	30
56	Import of rat mitochondrial citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import receptor Tom20 and inhibits membrane translocation. Journal of Cell Science, 2005, 118, 3985-3995.	2.0	13
57	Further insights into the assembly of the yeast cytochrome bc1complex based on analysis of single and double deletion mutants lacking supernumerary subunits and cytochrome b. FEBS Journal, 2004, 271, 1209-1218.	0.2	44
58	The Mitochondrial Tricarboxylate Carrier of Silver Eel: Chemical Modification by Sulfhydryl Reagents. BMB Reports, 2004, 37, 515-521.	2.4	6
59	Biogenesis of Rat Mitochondrial Citrate Carrier (CIC): The N-terminal Presequence Facilitates the Solubility of the Preprotein but does not act as a Targeting Signal. Journal of Molecular Biology, 2003, 325, 399-408.	4.2	31
60	The mitochondrial tricarboxylate carrier of silver eel: dimeric structure and cytosolic exposure of both N- and C-termini. The Protein Journal, 2002, 21, 515-521.	1.1	20
61	Biogenesis of the dicarboxylate carrier (DIC): translocation across the mitochondrial outer membrane and subsequent release from the TOM channel are membrane potential-independent 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2001, 310, 965-971.	4.2	20
62	Covariance of tricarboxylate carrier activity and lipogenesis in liver of polyunsaturated fatty acid (n-6) fed rats. FEBS Journal, 2001, 268, 5734-5739.	0.2	30
63	The Mitochondrial Tricarboxylate Carrier: Unexpected Increased Activity in Starved Silver Eels. Biochemical and Biophysical Research Communications, 2000, 276, 893-898.	2.1	9
64	The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Molecular Microbiology, 1999, 31, 569-577.	2.5	88
65	Citrate carrier and lipogenic enzyme activities in lead intrate-induced proliferative and apoptotic phase in rat liver. IUBMB Life, 1999, 47, 607-614.	3.4	0
66	Targeting and assembly of the oxoglutarate carrier: general principles for biogenesis of carrier proteins of the mitochondrial inner membrane. Biochemical Journal, 1998, 333, 151-158.	3.7	55
67	Purification and Characterization of the Tricarboxylate Carrier from Eel Liver Mitochondria. Biochemical and Biophysical Research Communications, 1996, 223, 508-513.	2.1	27
68	Partial purification and reconstitution of the tricarboxylate carrier from eel liver mitochondria. IUBMB Life, 1996, 39, 369-375.	3.4	0
69	Effect of starvation on the activity of the mitochondrial tricarboxylate carrier. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1239, 33-38.	2.6	39
70	Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. Journal of Bioenergetics and Biomembranes, 1993, 25, 493-501.	2.3	60
71	Characterization of pore-forming activity in liver mitochondria from Anguilla anguilla. Two porins in mitochondria?. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1061, 279-286.	2.6	22
72	Biogenesis of the mitochondrial phosphate carrier. FEBS Journal, 1991, 198, 405-410.	0.2	33

#	Article	IF	CITATIONS
73	Immunological characterization of the mitochondrial 2-oxoglutarate carrier from liver and heart. FEBS Letters, 1990, 263, 295-298.	2.8	9
74	Effect of anthracycline antibiotics on the reconstituted mitochondrial tricarboxylate carrier. Biochemical and Biophysical Research Communications, 1989, 164, 1281-1287.	2.1	4
75	Inhibition and labelling of the mitochondrial 2-oxoglutarate carrier by eosin-5-maleimide. FEBS Letters, 1988, 236, 493-496.	2.8	17
76	Inhibition of the mitochondrial tricarboxylate carrier by arginine-specific reagents. FEBS Letters, 1986, 205, 282-286.	2.8	12
77	The N-terminal extension of the eel mitochondrial citrate carrier (CIC) acts as a charged intramolecular chaperone. , 0, 2007, .		0