Héctor A Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620327/publications.pdf

Version: 2024-02-01

101 papers 4,886 citations

38 h-index

87888

98798 67 g-index

106 all docs

106 docs citations

106 times ranked 4738 citing authors

#	Article	IF	Citations
1	Enzymatic hydrolysis assisted with ligninocellulolytic enzymes from Trametes hirsuta produced by pineapple leaf waste bioconversion in solid-state fermentation. Biomass Conversion and Biorefinery, 2023, 13, 9095-9106.	4.6	7
2	Enzymatic Hydrolysis, Kinetic Modeling of Hemicellulose Fraction, and Energy Efficiency of Autohydrolysis Pretreatment Using Agave Bagasse. Bioenergy Research, 2023, 16, 75-87.	3.9	8
3	The Application of Chemometric Methods in the Production of Enzymes Through Solid State Fermentation Uses the Artificial Neural Network—a Review. Bioenergy Research, 2023, 16, 279-288.	3.9	3
4	A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Applied Biochemistry and Biotechnology, 2023, 195, 5497-5540.	2.9	5
5	Recovery of melon residues (Cucumis melo) to produce lignocellulolytic enzymes. Biomass Conversion and Biorefinery, 2022, 12, 5915-5922.	4.6	1
6	Production of a fermented solid containing lipases from <i>Penicillium roqueforti</i> ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnology and Applied Biochemistry, 2022, 69, 1284-1299.	3.1	12
7	Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresource Technology, 2022, 343, 126017.	9.6	19
8	Circular bioeconomy in the production of fucoxanthin from aquatic biomass: extraction and bioactivities. Journal of Chemical Technology and Biotechnology, 2022, 97, 1363-1378.	3.2	6
9	Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresource Technology, 2022, 346, 126456.	9.6	16
10	Sustainable Biorefinery Processing for Hemicellulose Fractionation and Bio-based Products in a Circular Bioeconomy. Clean Energy Production Technologies, 2022, , 39-69.	0.5	4
11	Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis Using Hydrothermally Pretreated Corn Cob Biomass. Bioenergy Research, 2022, 15, 1946-1957.	3.9	20
12	Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? AAcritical state-of-the-artAreview., 2022, 15, 35.		14
13	High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology – A review. Bioresource Technology, 2022, 351, 127044.	9.6	31
14	Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules, 2022, 27, 3887.	3.8	9
15	Ethanol production from banana peels at high pretreated substrate loading: comparison of two operational strategies. Biomass Conversion and Biorefinery, 2021, 11, 1587-1596.	4.6	13
16	Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Critical Reviews in Food Science and Nutrition, 2021, 61, 2984-3006.	10.3	22
17	Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresource Technology, 2021, 321, 124458.	9.6	57
18	Evaluation of Bioethanol Production from Sweet Sorghum Variety Roger under Different Tillage and Fertilizer Treatments. Bioenergy Research, 2021, 14, 1058-1069.	3.9	9

#	Article	IF	CITATIONS
19	Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy and Fuels, 2021, 5, 4233-4247.	4.9	42
20	Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: A review. Industrial Crops and Products, 2021, 162, 113274.	5.2	99
21	Recovery of bioactive components from avocado peels using microwave-assisted extraction. Food and Bioproducts Processing, 2021, 127, 152-161.	3.6	34
22	High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresource Technology, 2021, 329, 124935.	9.6	60
23	Application of chemometric tools in the development of food bars based on cocoa shell, soy flour and green banana flour. International Journal of Food Science and Technology, 2021, 56, 5296-5304.	2.7	5
24	Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse. Energies, 2021, 14, 4746.	3.1	13
25	Subcritical water pretreatment for agave bagasse fractionation from tequila production and enzymatic susceptibility. Bioresource Technology, 2021, 338, 125536.	9.6	24
26	Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews, 2021, 151, 111622.	16.4	70
27	Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 151, 111553.	16.4	58
28	Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion) Tj ETQq0 0 2021, 342, 125961.	0 rgBT /O [.] 9.6	verlock 10 Tf 83
29	Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review. Bioresource Technology Reports, 2021, 16, 100863.	2.7	15
30	Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299, 122685.	9.6	236
31	Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101467.	3.1	27
32	Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy, 2020, 10, 1834.	3.0	71
33	Hydrothermal–Microwave Processing for Starch Extraction from Mexican Avocado Seeds: Operational Conditions and Characterization. Processes, 2020, 8, 759.	2.8	23
34	Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: An overview., 2020,, 393-446.		13
35	Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops and Products, 2020, 154, 112623.	5.2	55
36	Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production. Renewable Energy, 2020, 155, 1347-1354.	8.9	43

#	Article	IF	Citations
37	Enzymes in the third generation biorefinery for macroalgae biomass. , 2020, , 363-396.		12
38	Biomass Fractionation to Bio-Based Products in Terms of Biorefinery Concept., 2020,, 395-427.		2
39	Fermentative Bioprocesses for Detoxification of Agri-Food Wastes for Production of Bioactive Compounds. , 2020, , 287-318.		0
40	Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes. Microorganisms for Sustainability, 2020, , 87-113.	0.7	7
41	Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganisms, 2019, 7, 483.	3.6	16
42	Emerging strategies for the development of food industries. Bioengineered, 2019, 10, 522-537.	3.2	20
43	The enzyme biorefinery platform for advanced biofuels production. Bioresource Technology Reports, 2019, 7, 100257.	2.7	59
44	Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydrate Polymers, 2019, 211, 349-359.	10.2	71
45	Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S.Âcerevisiae and K.Âmarxianus. Renewable Energy, 2019, 138, 1127-1133.	8.9	35
46	Fungal Proteases and Production of Bioactive Peptides for the Food Industry. , 2019, , 221-246.		18
47	New Features and Properties of Microbial Cellulases Required for Bioconversion of Agro-industrial Wastes., 2019,, 535-550.		3
48	Biorefinery Approach for Red Seaweeds Biomass as Source for Enzymes Production: Food and Biofuels Industry. Energy, Environment, and Sustainability, 2019, , 413-446.	1.0	1
49	Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 2019, 102, 63-74.	16.4	116
50	Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste and Biomass Valorization, 2019, 10, 2249-2262.	3.4	16
51	Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 2018, 347, 119-136.	12.7	145
52	Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresource Technology, 2018, 263, 112-119.	9.6	73
53	Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresource Technology, 2018, 247, 582-590.	9.6	41
54	Utilization of Citrus Waste Biomass for Antioxidant Production by Solid-State Fermentation. Energy, Environment, and Sustainability, 2018, , 83-96.	1.0	2

#	Article	IF	CITATIONS
55	Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. Energy, Environment, and Sustainability, 2018, , 141-170.	1.0	14
56	Operational Strategies for Enzymatic Hydrolysis in a Biorefinery. Biofuel and Biorefinery Technologies, 2018, , 223-248.	0.3	17
57	Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and Bioenergy, 2018, 118, 133-140.	5.7	34
58	Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 2018, 80, 51-60.	15.1	165
59	Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, 2018, 5, 780-791.	13.3	152
60	Operational and engineering aspects of packed bed bioreactors for solid-state fermentation. , 2018, , 353-369.		0
61	Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, 2017, 136, 50-65.	9.2	251
62	Process alternatives for bioethanol production from mango stem bark residues. Bioresource Technology, 2017, 239, 430-436.	9.6	34
63	Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 2017, 257, 110-127.	4.7	77
64	Hydrothermal Processing in Biorefineries. , 2017, , .		41
65	Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 2017, 243, 273-283.	9.6	91
66	<i>Trichoderma</i> sp. spores and <i>Kluyveromyces marxianus</i> cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles. Preparative Biochemistry and Biotechnology, 2017, 47, 554-561.	1.9	8
67	Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Science and Biotechnology, 2017, 26, 993-1001.	2.6	35
68	Pectinolytic Enzymes., 2017,, 47-71.		4
69	Tannases. , 2017, , 471-489.		9
70	Hydrothermal Processes for Extraction of Macroalgae High Value-Added Compounds. , 2017, , 461-481.		8
71	Kinetic Modeling, Operational Conditions, and Biorefinery Products from Hemicellulose: Depolymerization and Solubilization During Hydrothermal Processing., 2017,, 141-160.		6
72	Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy, 2016, 94, 353-365.	8.9	91

#	Article	IF	Citations
73	Evaluation of agave bagasse recalcitrance using AFEXâ,,¢, autohydrolysis, and ionic liquid pretreatments. Bioresource Technology, 2016, 211, 216-223.	9.6	74
74	Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 2016, 95, 1-9.	8.9	65
75	Bioenergy Potential, Energy Crops, and Biofuel Production in Mexico. Bioenergy Research, 2016, 9, 981-984.	3.9	31
76	Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Industrial Crops and Products, 2016, 83, 500-508.	5.2	23
77	Dynamic Modelling and Experimental Validation of a Pilot-Scale Tubular Continuous Reactor for the Autohydrolysis of Lignocellulosic Materials. Computer Aided Chemical Engineering, 2015, 37, 431-436.	0.5	4
78	Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Industrial Crops and Products, 2015, 66, 305-311.	5.2	71
79	Non-alkaline solubilization of arabinoxylans from destarched wheat bran using hydrothermal microwave processing and comparison with the hydrolysis by an endoxylanase. Chemical Engineering and Processing: Process Intensification, 2015, 96, 72-82.	3.6	27
80	Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries., 2015,, 467-491.		8
81	Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Industrial Crops and Products, 2015, 77, 1-12.	5.2	57
82	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16
83	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
83	Cellulose from Lignocellulosic Waste., 2014, , 1-33. Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491.	6.4	6
	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed	6.4	
84	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491. Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus		67
84	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491. Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.	4.6	67 23
84 85 86	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491. Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technology, 2014, 161, 192-199. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel, 2014, 131,	4.6 9.6	67 23 90
84 85 86	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491. Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technology, 2014, 161, 192-199. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel, 2014, 131, 66-76. Fractionation of ⟨i⟩ Eucalyptus globulus ⟨ i⟩ Wood by Glycerol–Water Pretreatment: Optimization and	4.6 9.6 6.4	67 23 90

#	Article	IF	CITATIONS
91	Production of xylanase and \hat{l}^2 -xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	3.4	35
92	A New Approach on Brewer's Spent Grains Treatment and Potential Use as Lignocellulosic Yeast Cells Carriers. Journal of Agricultural and Food Chemistry, 2012, 60, 5994-5999.	5.2	28
93	Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain $\hat{a} \in \text{Effect of process conditions}$. Fuel, 2012, 95, 528-536.	6.4	100
94	Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Industrial Crops and Products, 2012, 36, 100-107.	5.2	72
95	Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal, 2012, 65, 90-95.	3.6	116
96	Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis) Tj ETQq0 (629-641.	0 0 rgBT /C 2.9	overlock 10 T 88
97	Evaluation of a hydrothermal process for pretreatment of wheat strawâ€"effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	3.2	43
98	Effect of Chitosan-Based Coatings on the Shelf Life of Salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 2010, 58, 11456-11462.	5.2	130
99	Calculation of the enthalpies of formation for transition metal complexes. Chemical Physics Letters, 2005, 401, 58-61.	2.6	48
100	PRODUCTION OF MEXICAN BROWN MACROALGAE FUCOIDAN AND FUCOSIDASES UNDER AN INTEGRAL GREEN TECHNOLOGY BIOPROCESES BY THE BIOREFINERY CONCEPT. , 0, , .		1
101	O PRÉ-TRATAMENTO HIDROTÉRMICO NO CONCEITO DAS BIORREFINARIAS. , 0, , .		O