List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, 2013, 21, 35-51.	16.4	509
2	Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, 2017, 136, 50-65.	9.2	251
3	Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299, 122685.	9.6	236
4	Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 2018, 80, 51-60.	15.1	165
5	Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, 2018, 5, 780-791.	13.3	152
6	Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 2018, 347, 119-136.	12.7	145
7	Effect of Chitosan-Based Coatings on the Shelf Life of Salmon (Salmo salar). Journal of Agricultural and Food Chemistry, 2010, 58, 11456-11462.	5.2	130
8	Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Engineering Journal, 2012, 65, 90-95.	3.6	116
9	Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 2019, 102, 63-74.	16.4	116
10	Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymers, 2013, 92, 2154-2162.	10.2	109
11	Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain – Effect of process conditions. Fuel, 2012, 95, 528-536.	6.4	100
12	Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel, 2014, 131, 66-76.	6.4	100
13	Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: A review. Industrial Crops and Products, 2021, 162, 113274.	5.2	99
14	Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable Energy, 2016, 94, 353-365.	8.9	91
15	Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 2017, 243, 273-283.	9.6	91
16	Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technology, 2014, 161, 192-199.	9.6	90
17	Development and Characterization of an Environmentally Friendly Process Sequence (Autohydrolysis) Tj ETQq1 629-641.	1 0.78431 2.9	4 rgBT /Over 88
18	Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 83

2021, 342, 125961.

#	Article	IF	CITATIONS
19	Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 2017, 257, 110-127.	4.7	77
20	Evaluation of agave bagasse recalcitrance using AFEXâ,,¢, autohydrolysis, and ionic liquid pretreatments. Bioresource Technology, 2016, 211, 216-223.	9.6	74
21	Scale-up and evaluation of hydrothermal pretreatment in isothermal and non-isothermal regimen for bioethanol production using agave bagasse. Bioresource Technology, 2018, 263, 112-119.	9.6	73
22	Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Industrial Crops and Products, 2012, 36, 100-107.	5.2	72
23	Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties. Industrial Crops and Products, 2015, 66, 305-311.	5.2	71
24	Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydrate Polymers, 2019, 211, 349-359.	10.2	71
25	Consolidated Bioprocessing, an Innovative Strategy towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy, 2020, 10, 1834.	3.0	71
26	Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews, 2021, 151, 111622.	16.4	70
27	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491.	6.4	67
28	Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 2016, 95, 1-9.	8.9	65
29	High-pressure technology for Sargassum spp biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresource Technology, 2021, 329, 124935.	9.6	60
30	The enzyme biorefinery platform for advanced biofuels production. Bioresource Technology Reports, 2019, 7, 100257.	2.7	59
31	Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives. Renewable and Sustainable Energy Reviews, 2021, 151, 111553.	16.4	58
32	Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Industrial Crops and Products, 2015, 77, 1-12.	5.2	57
33	Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresource Technology, 2021, 321, 124458.	9.6	57
34	Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops and Products, 2020, 154, 112623.	5.2	55
35	Calculation of the enthalpies of formation for transition metal complexes. Chemical Physics Letters, 2005, 401, 58-61.	2.6	48
36	Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. Journal of Chemical Technology and Biotechnology, 2011, 86, 88-94.	3.2	43

HéCTOR A RUIZ

#	Article	IF	CITATIONS
37	Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production. Renewable Energy, 2020, 155, 1347-1354.	8.9	43
38	Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy and Fuels, 2021, 5, 4233-4247.	4.9	42
39	Hydrothermal Processing in Biorefineries. , 2017, , .		41
40	Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresource Technology, 2018, 247, 582-590.	9.6	41
41	Fractionation of <i>Eucalyptus globulus</i> Wood by Glycerol–Water Pretreatment: Optimization and Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 14342-14352.	3.7	37
42	Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess and Biosystems Engineering, 2012, 35, 1185-1192.	3.4	35
43	Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Science and Biotechnology, 2017, 26, 993-1001.	2.6	35
44	Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S.Âcerevisiae and K.Âmarxianus. Renewable Energy, 2019, 138, 1127-1133.	8.9	35
45	Process alternatives for bioethanol production from mango stem bark residues. Bioresource Technology, 2017, 239, 430-436.	9.6	34
46	Release of simple sugars from lignocellulosic biomass of Agave salmiana leaves subject to sequential pretreatment and enzymatic saccharification. Biomass and Bioenergy, 2018, 118, 133-140.	5.7	34
47	Recovery of bioactive components from avocado peels using microwave-assisted extraction. Food and Bioproducts Processing, 2021, 127, 152-161.	3.6	34
48	Bioenergy Potential, Energy Crops, and Biofuel Production in Mexico. Bioenergy Research, 2016, 9, 981-984.	3.9	31
49	High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology – A review. Bioresource Technology, 2022, 351, 127044.	9.6	31
50	A New Approach on Brewer's Spent Grains Treatment and Potential Use as Lignocellulosic Yeast Cells Carriers. Journal of Agricultural and Food Chemistry, 2012, 60, 5994-5999.	5.2	28
51	Non-alkaline solubilization of arabinoxylans from destarched wheat bran using hydrothermal microwave processing and comparison with the hydrolysis by an endoxylanase. Chemical Engineering and Processing: Process Intensification, 2015, 96, 72-82.	3.6	27
52	Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101467.	3.1	27
53	Subcritical water pretreatment for agave bagasse fractionation from tequila production and enzymatic susceptibility. Bioresource Technology, 2021, 338, 125536.	9.6	24
54	Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86.	4.6	23

#	Article	IF	CITATIONS
55	Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Industrial Crops and Products, 2016, 83, 500-508.	5.2	23
56	Hydrothermal–Microwave Processing for Starch Extraction from Mexican Avocado Seeds: Operational Conditions and Characterization. Processes, 2020, 8, 759.	2.8	23
57	Spontaneously fermented traditional beverages as a source of bioactive compounds: an overview. Critical Reviews in Food Science and Nutrition, 2021, 61, 2984-3006.	10.3	22
58	Emerging strategies for the development of food industries. Bioengineered, 2019, 10, 522-537.	3.2	20
59	Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis Using Hydrothermally Pretreated Corn Cob Biomass. Bioenergy Research, 2022, 15, 1946-1957.	3.9	20
60	Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresource Technology, 2022, 343, 126017.	9.6	19
61	Fungal Proteases and Production of Bioactive Peptides for the Food Industry. , 2019, , 221-246.		18
62	Operational Strategies for Enzymatic Hydrolysis in a Biorefinery. Biofuel and Biorefinery Technologies, 2018, , 223-248.	0.3	17
63	Consolidated Bioprocess for Bioethanol Production from Raw Flour of Brosimum alicastrum Seeds Using the Native Strain of Trametes hirsuta Bm-2. Microorganisms, 2019, 7, 483.	3.6	16
64	Valorization, Comparison and Characterization of Coconuts Waste and Cactus in a Biorefinery Context Using NaClO2–C2H4O2 and Sequential NaClO2–C2H4O2/Autohydrolysis Pretreatment. Waste and Biomass Valorization, 2019, 10, 2249-2262.	3.4	16
65	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16
66	Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresource Technology, 2022, 346, 126456.	9.6	16
67	Macroalgal biomass in terms of third-generation biorefinery concept: Current status and techno-economic analysis – A review. Bioresource Technology Reports, 2021, 16, 100863.	2.7	15
68	Bioeconomy and Biorefinery: Valorization of Hemicellulose from Lignocellulosic Biomass and Potential Use of Avocado Residues as a Promising Resource of Bioproducts. Energy, Environment, and Sustainability, 2018, , 141-170.	1.0	14
69	Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? AAcritical state-of-the-artÂreview. , 2022, 15, 35.		14
70	Ethanol production from banana peels at high pretreated substrate loading: comparison of two operational strategies. Biomass Conversion and Biorefinery, 2021, 11, 1587-1596.	4.6	13
71	Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: An overview. , 2020, , 393-446.		13
72	Hot Compressed Water Pretreatment and Surfactant Effect on Enzymatic Hydrolysis Using Agave Bagasse. Energies, 2021, 14, 4746.	3.1	13

#	Article	IF	CITATIONS
73	Enzymes in the third generation biorefinery for macroalgae biomass. , 2020, , 363-396.		12
74	Production of a fermented solid containing lipases from <i>Penicillium roqueforti</i> ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnology and Applied Biochemistry, 2022, 69, 1284-1299.	3.1	12
75	Tannases. , 2017, , 471-489.		9
76	Evaluation of Bioethanol Production from Sweet Sorghum Variety Roger under Different Tillage and Fertilizer Treatments. Bioenergy Research, 2021, 14, 1058-1069.	3.9	9
77	Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules, 2022, 27, 3887.	3.8	9
78	Hydrothermal Pretreatments of Macroalgal Biomass for Biorefineries. , 2015, , 467-491.		8
79	<i>Trichoderma</i> sp. spores and <i>Kluyveromyces marxianus</i> cells magnetic separation: Immobilization on chitosan-coated magnetic nanoparticles. Preparative Biochemistry and Biotechnology, 2017, 47, 554-561.	1.9	8
80	Hydrothermal Processes for Extraction of Macroalgae High Value-Added Compounds. , 2017, , 461-481.		8
81	Enzymatic Hydrolysis, Kinetic Modeling of Hemicellulose Fraction, and Energy Efficiency of Autohydrolysis Pretreatment Using Agave Bagasse. Bioenergy Research, 2023, 16, 75-87.	3.9	8
82	Enzymatic hydrolysis assisted with ligninocellulolytic enzymes from Trametes hirsuta produced by pineapple leaf waste bioconversion in solid-state fermentation. Biomass Conversion and Biorefinery, 2023, 13, 9095-9106.	4.6	7
83	Advantages and Progress Innovations of Solid-State Fermentation to Produce Industrial Enzymes. Microorganisms for Sustainability, 2020, , 87-113.	0.7	7
84	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
85	Circular bioeconomy in the production of fucoxanthin from aquatic biomass: extraction and bioactivities. Journal of Chemical Technology and Biotechnology, 2022, 97, 1363-1378.	3.2	6
86	Kinetic Modeling, Operational Conditions, and Biorefinery Products from Hemicellulose: Depolymerization and Solubilization During Hydrothermal Processing. , 2017, , 141-160.		6
87	Application of chemometric tools in the development of food bars based on cocoa shell, soy flour and green banana flour. International Journal of Food Science and Technology, 2021, 56, 5296-5304.	2.7	5
88	A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Applied Biochemistry and Biotechnology, 2023, 195, 5497-5540.	2.9	5
89	Dynamic Modelling and Experimental Validation of a Pilot-Scale Tubular Continuous Reactor for the Autohydrolysis of Lignocellulosic Materials. Computer Aided Chemical Engineering, 2015, 37, 431-436.	0.5	4

6

#	Article	IF	CITATIONS
91	Sustainable Biorefinery Processing for Hemicellulose Fractionation and Bio-based Products in a Circular Bioeconomy. Clean Energy Production Technologies, 2022, , 39-69.	0.5	4
92	New Features and Properties of Microbial Cellulases Required for Bioconversion of Agro-industrial Wastes. , 2019, , 535-550.		3
93	The Application of Chemometric Methods in the Production of Enzymes Through Solid State Fermentation Uses the Artificial Neural Network—a Review. Bioenergy Research, 2023, 16, 279-288.	3.9	3
94	Utilization of Citrus Waste Biomass for Antioxidant Production by Solid-State Fermentation. Energy, Environment, and Sustainability, 2018, , 83-96.	1.0	2
95	Biomass Fractionation to Bio-Based Products in Terms of Biorefinery Concept. , 2020, , 395-427.		2
96	Biorefinery Approach for Red Seaweeds Biomass as Source for Enzymes Production: Food and Biofuels Industry. Energy, Environment, and Sustainability, 2019, , 413-446.	1.0	1
97	Recovery of melon residues (Cucumis melo) to produce lignocellulolytic enzymes. Biomass Conversion and Biorefinery, 2022, 12, 5915-5922.	4.6	1
98	PRODUCTION OF MEXICAN BROWN MACROALGAE FUCOIDAN AND FUCOSIDASES UNDER AN INTEGRAL GREEN TECHNOLOGY BIOPROCESES BY THE BIOREFINERY CONCEPT. , 0, , .		1
99	O PRÉ-TRATAMENTO HIDROTÉRMICO NO CONCEITO DAS BIORREFINARIAS. , 0, , .		0
100	Operational and engineering aspects of packed bed bioreactors for solid-state fermentation. , 2018, , 353-369.		0
101	Fermentative Bioprocesses for Detoxification of Agri-Food Wastes for Production of Bioactive Compounds. , 2020, , 287-318.		Ο