Johannes Emmerling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620307/publications.pdf

Version: 2024-02-01

45 papers

6,981 citations

279487 23 h-index 233125 45 g-index

48 all docs

48 docs citations

48 times ranked

6982 citing authors

#	Article	IF	CITATIONS
1	International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways. Sustainability, 2022, 14, 4757.	1.6	2
2	Climate impacts on nutrition and labor supply disentangled $\hat{a} \in$ an analysis for rural areas of Uganda. Environment and Development Economics, 2021, 26, 512-537.	1.3	20
3	Climate thresholds and heterogeneous regions: Implications for coalition formation. Review of International Organizations, 2021, 16, 293-316.	2.0	6
4	Representing inequalities in integrated assessment modeling of climate change. One Earth, 2021, 4, 177-180.	3.6	19
5	Exploring the possibility space: taking stock of the diverse capabilities and gaps in integrated assessment models. Environmental Research Letters, 2021, 16, 053006.	2.2	84
6	Subjective Well-Being at the Macro Levelâ€"EmpiricsÂand Future Scenarios. Social Indicators Research, 2021, 157, 899-928.	1.4	4
7	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	2.2	36
8	Persistent inequality in economically optimal climate policies. Nature Communications, 2021, 12, 3421.	5.8	44
9	Integrated perspective on translating biophysical to economic impacts of climate change. Nature Climate Change, 2021, 11, 563-572.	8.1	34
10	Energy system developments and investments in the decisive decade for the Paris Agreement goals. Environmental Research Letters, 2021, 16, 074020.	2.2	41
11	Meeting well-below 2°C target would increase energy sector jobs globally. One Earth, 2021, 4, 1026-1036.	3.6	44
12	Land-based implications of early climate actions without global net-negative emissions. Nature Sustainability, 2021, 4, 1052-1059.	11.5	27
13	Net zero-emission pathways reduce the physical and economic risks of climate change. Nature Climate Change, 2021, 11, 1070-1076.	8.1	39
14	Implications of various effort-sharing approaches for national carbon budgets and emission pathways. Climatic Change, 2020, 162, 1805-1822.	1.7	131
15	Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nature Communications, 2020, 11, 2096.	5.8	241
16	Reducing stranded assets through early action in the Indian power sector. Environmental Research Letters, 2020, 15, 094091.	2.2	25
17	WELFARE AS EQUITY EQUIVALENTS. Journal of Economic Surveys, 2020, 34, 727-752.	3.7	10
18	Early retirement of power plants in climate mitigation scenarios. Environmental Research Letters, 2020, 15, 094064.	2.2	38

#	Article	IF	CITATIONS
19	Reply to: Why fossil fuel producer subsidies matter. Nature, 2020, 578, E5-E7.	13.7	3
20	The role of the discount rate for emission pathways and negative emissions. Environmental Research Letters, 2019, 14, 104008.	2.2	80
21	A multi-model assessment of food security implications of climate change mitigation. Nature Sustainability, 2019, 2, 386-396.	11.5	152
22	Inequality and the Social Cost of Carbon. Journal of the Association of Environmental and Resource Economists, 2019, 6, 243-273.	1.0	24
23	Scenarios towards limiting global mean temperature increase below 1.5 \hat{A}° C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
24	Limited emission reductions from fuel subsidy removal except in energy-exporting regions. Nature, 2018, 554, 229-233.	13.7	125
25	Climate Engineering and Abatement: A †flat' Relationship Under Uncertainty. Environmental and Resource Economics, 2018, 69, 395-415.	1.5	10
26	Discounting and intragenerational equity. Environment and Development Economics, 2018, 23, 19-36.	1.3	8
27	Future Global Air Quality Indices under Different Socioeconomic and Climate Assumptions. Sustainability, 2018, 10, 3645.	1.6	17
28	Exploration of the interactions between mitigation and solar radiation management in cooperative and non-cooperative international governance settings. Global Environmental Change, 2018, 53, 244-251.	3.6	12
29	Climate engineering under deep uncertainty. Journal of Economic Dynamics and Control, 2018, 94, 207-224.	0.9	13
30	Bearing the Cost of Stored Carbon Leakage. Frontiers in Energy Research, 2018, 6, .	1.2	23
31	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	8.1	380
32	Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 2018, 3, 664-673.	19.8	122
33	SHARING OF CLIMATE RISKS ACROSS WORLD REGIONS. Climate Change Economics, 2018, 09, 1850007.	2.9	2
34	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	19.8	377
35	Managing Catastrophic Climate Risks Under Model Uncertainty Aversion. Management Science, 2017, 63, 749-765.	2.4	64
36	Transport fuel demand responses to fuel price and income projections: Comparison of integrated assessment models. Transportation Research, Part D: Transport and Environment, 2017, 55, 310-321.	3.2	16

#	Article	IF	CITATIONS
37	Car ownership and hedonic adaptation. Journal of Economic Psychology, 2017, 61, 29-38.	1.1	10
38	Discounting and the representative median agent. Economics Letters, 2017, 161, 78-81.	0.9	13
39	Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 2017, 42, 297-315.	3.6	418
40	Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 2017, 42, 316-330.	3.6	247
41	The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 2017, 42, 153-168.	3.6	2,966
42	Climate policy under socio-economic scenario uncertainty. Environmental Modelling and Software, 2016, 79, 334-342.	1.9	9
43	The Stability and Effectiveness of Climate Coalitions. Environmental and Resource Economics, 2015, 62, 811-836.	1.5	51
44	The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways. SSRN Electronic Journal, 0 , , .	0.4	37
45	Welfare As Simple(X) Equity Equivalents. SSRN Electronic Journal, 0, , .	0.4	1