Miguel F Segura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7620018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering pH‧ensitive Stable Nanovesicles for Delivery of MicroRNA Therapeutics. Small, 2022, 18, e2101959.	5.2	13
2	The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells. Autophagy, 2021, 17, 1349-1366.	4.3	72
3	Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines, 2021, 9, 508.	1.4	6
4	The Novel KIF1A Missense Variant (R169T) Strongly Reduces Microtubule Stimulated ATPase Activity and Is Associated With NESCAV Syndrome. Frontiers in Neuroscience, 2021, 15, 618098.	1.4	11
5	Engineering DNAâ€Grafted Quatsomes as Stable Nucleic Acidâ€Responsive Fluorescent Nanovesicles. Advanced Functional Materials, 2021, 31, 2103511.	7.8	9
6	Dickkopf Proteins and Their Role in Cancer: A Family of Wnt Antagonists with a Dual Role. Pharmaceuticals, 2021, 14, 810.	1.7	11
7	Neuronal Differentiation-Related Epigenetic Regulator ZRF1 Has Independent Prognostic Value in Neuroblastoma but Is Functionally Dispensable In Vitro. Cancers, 2021, 13, 4845.	1.7	0
8	The oral KIF11 inhibitor 4SCâ€205 exhibits antitumor activity and potentiates standard and targeted therapies in primary and metastatic neuroblastoma models. Clinical and Translational Medicine, 2021, 11, e533.	1.7	7
9	Dickkopf-1 Inhibition Reactivates Wnt/Ĵ²-Catenin Signaling in Rhabdomyosarcoma, Induces Myogenic Markers In Vitro and Impairs Tumor Cell Survival In Vivo. International Journal of Molecular Sciences, 2021, 22, 12921.	1.8	2
10	Methodological advances in the discovery of novel neuroblastoma therapeutics. Expert Opinion on Drug Discovery, 2021, , 1-13.	2.5	5
11	Loss of microRNA-135b Enhances Bone Metastasis in Prostate Cancer and Predicts Aggressiveness in Human Prostate Samples. Cancers, 2021, 13, 6202.	1.7	8
12	Editorial: PVT1 in Cancer. Frontiers in Oncology, 2020, 10, 588786.	1.3	3
13	A Context-Dependent Role for MiR-124-3p on Cell Phenotype, Viability and Chemosensitivity in Neuroblastoma in vitro. Frontiers in Cell and Developmental Biology, 2020, 8, 559553.	1.8	15
14	CN133, a Novel Brain-Penetrating Histone Deacetylase Inhibitor, Hampers Tumor Growth in Patient-Derived Pediatric Posterior Fossa Ependymoma Models. Cancers, 2020, 12, 1922.	1.7	7
15	The antitumour drug ABTL0812 impairs neuroblastoma growth through endoplasmic reticulum stress-mediated autophagy and apoptosis. Cell Death and Disease, 2020, 11, 773.	2.7	7
16	FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b. Frontiers in Cell and Developmental Biology, 2020, 8, 584606.	1.8	11
17	miRNA-7 and miRNA-324-5p regulate alpha9-Integrin expression and exert anti-oncogenic effects in rhabdomyosarcoma. Cancer Letters, 2020, 477, 49-59.	3.2	24
18	Aurora Borealis (Bora), Which Promotes Plk1 Activation by Aurora A, Has an Oncogenic Role in Ovarian Cancer, Cancers, 2020, 12, 886.	1.7	12

#	Article	IF	CITATIONS
19	Abstract 1234: The anticancer drug ABTL0812 induces cancer cell death by impairing Akt/mTORC1 axis and inducing ER stress-mediated cytotoxic autophagy. , 2020, , .		0
20	SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death and Disease, 2020, 11, 82.	2.7	7
21	A High-Throughput Screening Identifies MicroRNA Inhibitors That Influence Neuronal Maintenance and/or Response to Oxidative Stress. Molecular Therapy - Nucleic Acids, 2019, 17, 374-387.	2.3	19
22	MicroRNA-654-5p suppresses ovarian cancer development impacting on MYC, WNT and AKT pathways. Oncogene, 2019, 38, 6035-6050.	2.6	49
23	ATRX In-Frame Fusion Neuroblastoma Is Sensitive to EZH2 Inhibition via Modulation of Neuronal Gene Signatures. Cancer Cell, 2019, 36, 512-527.e9.	7.7	44
24	Interplay Between ncRNAs and Cellular Communication: A Proposal for Understanding Cell-Specific Signaling Pathways. Frontiers in Genetics, 2019, 10, 281.	1.1	35
25	Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cellular and Molecular Life Sciences, 2019, 76, 2231-2243.	2.4	32
26	Long Non-coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer. Frontiers in Oncology, 2019, 9, 1173.	1.3	12
27	Targeting of epigenetic regulators in neuroblastoma. Experimental and Molecular Medicine, 2018, 50, 1-12.	3.2	34
28	Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. British Journal of Cancer, 2018, 118, 106-116.	2.9	24
29	Combined <scp>miRNA</scp> profiling and proteomics demonstrates that different <scp>miRNAs</scp> target a common set of proteins to promote colorectal cancer metastasis. Journal of Pathology, 2017, 242, 39-51.	2.1	37
30	Ligand-dependent Hedgehog pathway activation in Rhabdomyosarcoma: the oncogenic role of the ligands. British Journal of Cancer, 2017, 117, 1314-1325.	2.9	21
31	Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clinical and Translational Oncology, 2017, 19, 44-50.	1.2	15
32	miR-99a reveals two novel oncogenic proteins E2F2 and EMR2 and represses stemness in lung cancer. Cell Death and Disease, 2017, 8, e3141-e3141.	2.7	78
33	Hedgehog Pathway Inhibition Hampers Sphere and Holoclone Formation in Rhabdomyosarcoma. Stem Cells International, 2017, 2017, 1-14.	1.2	10
34	MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells. Oncotarget, 2017, 8, 83384-83406.	0.8	23
35	Krüppel-like factor 4 (KLF4) regulates the miR-183~96~182 cluster under physiologic and pathologic conditions. Oncotarget, 2017, 8, 26298-26311.	0.8	12
36	MicroRNA-182 targets SMAD7 to potentiate TGFÎ ² -induced epithelial-mesenchymal transition and metastasis of cancer cells. Nature Communications, 2016, 7, 13884.	5.8	112

#	Article	IF	CITATIONS
37	Novel micro RNA-based therapies for the treatment of neuroblastoma. Anales De PediatrÃa (English) Tj ETQq1	1 0.784314 0.1	rgBT /Overic
38	Fas apoptosis inhibitory molecules: more than deathâ€receptor antagonists in the nervous system. Journal of Neurochemistry, 2016, 139, 11-21.	2.1	28
39	BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene, 2016, 35, 5179-5190.	2.6	65
40	SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene, 2016, 35, 2991-3003.	2.6	40
41	MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget, 2016, 7, 9271-9287.	0.8	31
42	Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Molecular Cell, 2015, 59, 75-88.	4.5	166
43	Identification of Metastasis-Suppressive microRNAs in Primary Melanoma. Journal of the National Cancer Institute, 2015, 107, .	3.0	47
44	TNFα sensitizes neuroblastoma cells to FasL-, cisplatin- and etoposide-induced cell death by NF-κB-mediated expression of Fas. Molecular Cancer, 2015, 14, 62.	7.9	18
45	Modulation of chemotherapeutic drug resistance in neuroblastoma <scp>SKâ€Nâ€AS</scp> cells by the neural apoptosis inhibitory protein and mi <scp>R</scp> â€520f. International Journal of Cancer, 2015, 136, 1579-1588.	2.3	33
46	Abstract A12: Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. , 2015, , .		1
47	MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness. Cell Death and Disease, 2014, 5, e1401-e1401.	2.7	15
48	Optimization of rhabdomyosarcoma disseminated disease assessment by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 1020-1029.	1.1	4
49	miRNA-Targeted Therapies in the Most Prevalent Pediatric Solid Tumors. , 2014, , 239-263.		2
50	Abstract 3457: A possible role for the Hedgehog pathway ligands Desert and Indian in rhabdomyosarcoma. , 2014, , .		0
51	Abstract 4380: The miR-15 family members are therapeutic candidates to treat chemoresistant neuroblastomas. , 2014, , .		0
52	BRD4 Sustains Melanoma Proliferation and Represents a New Target for Epigenetic Therapy. Cancer Research, 2013, 73, 6264-6276.	0.4	196
53	Dual Pten/Tp53 Suppression Promotes Sarcoma Progression by Activating Notch Signaling. American Journal of Pathology, 2013, 182, 2015-2027.	1.9	21
54	microRNAs as pharmacological targets in cancer. Pharmacological Research, 2013, 75, 3-14.	3.1	56

#	Article	IF	CITATIONS
55	FAIM-L Is an IAP-Binding Protein That Inhibits XIAP Ubiquitinylation and Protects from Fas-Induced Apoptosis. Journal of Neuroscience, 2013, 33, 19262-19275.	1.7	27
56	Hedgehog Pathway Blockade Inhibits Melanoma Cell Growth in Vitro and in Vivo. Pharmaceuticals, 2013, 6, 1429-1450.	1.7	40
57	Histology-Specific MicroRNA Alterations in Melanoma. Journal of Investigative Dermatology, 2012, 132, 1860-1868.	0.3	46
58	MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Human Molecular Genetics, 2012, 21, 2157-2165.	1.4	142
59	MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis, 2012, 33, 1823-1832.	1.3	79
60	<i>MiRâ€182</i> overexpression in tumourigenesis of highâ€grade serous ovarian carcinoma. Journal of Pathology, 2012, 228, 204-215.	2.1	138
61	Abstract 2185: BRD4 is a novel therapeutic target in melanoma. , 2012, , .		Ο
62	MicroRNA alterations associated with <i>BRAF</i> status in melanoma Journal of Clinical Oncology, 2012, 30, 8565-8565.	0.8	0
63	Early alterations of microRNA expression to predict and modulate melanoma metastasis Journal of Clinical Oncology, 2012, 30, 8550-8550.	0.8	Ο
64	The Novel Gamma Secretase Inhibitor RO4929097 Reduces the Tumor Initiating Potential of Melanoma. PLoS ONE, 2011, 6, e25264.	1.1	60
65	Efficient in vivo microRNA targeting of liver metastasis. Oncogene, 2011, 30, 1481-1488.	2.6	101
66	miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell, 2011, 20, 104-118.	7.7	314
67	The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature, 2010, 468, 1105-1109.	13.7	345
68	Melanoma MicroRNA Signature Predicts Post-Recurrence Survival. Clinical Cancer Research, 2010, 16, 1577-1586.	3.2	204
69	The Death Receptor Antagonist FLIP-L Interacts with Trk and Is Necessary for Neurite Outgrowth Induced by Neurotrophins. Journal of Neuroscience, 2010, 30, 6094-6105.	1.7	13
70	Abstract 1946: Identification of miRNAs that contribute to melanoma brain metastasis. , 2010, , .		0
71	Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1814-1819.	3.3	506
72	BCL-XL regulates TNF-α-mediated cell death independently of NF-Î⁰B, FLIP and IAPs. Cell Research, 2008, 18, 1020-1036.	5.7	37

#	Article	IF	CITATIONS
73	6â€Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPKâ€mediated, p53â€independent activation of Bax and PUMA. Journal of Neurochemistry, 2008, 104, 1599-1612.	2.1	121
74	The Long Form of Fas Apoptotic Inhibitory Molecule Is Expressed Specifically in Neurons and Protects Them against Death Receptor-Triggered Apoptosis. Journal of Neuroscience, 2007, 27, 11228-11241.	1.7	73
75	Reelin Induces the Detachment of Postnatal Subventricular Zone Cells and the Expression of the Egr-1 through Erk1/2 Activation. Cerebral Cortex, 2007, 17, 294-303.	1.6	61
76	Reactive Oxygen Species and p38 Mitogen-Activated Protein Kinase Activate Bax to Induce Mitochondrial Cytochrome c Release and Apoptosis in Response to Malonate. Molecular Pharmacology, 2007, 71, 736-743.	1.0	130
77	Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. Journal of Neurochemistry, 2007, 103, 070717084306001-???.	2.1	67
78	The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling. Journal of Cell Biology, 2004, 167, 479-492.	2.3	75
79	μ-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology, 2003, 44, 482-492.	2.0	70