
G R William Wint

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping environmental suitability of Haemagogus and Sabethes spp. mosquitoes to understand sylvatic transmission risk of yellow fever virus in Brazil. PLoS Neglected Tropical Diseases, 2022, 16, e0010019.	1.3	19
2	VectorNet: Putting Vectors on the Map. Frontiers in Public Health, 2022, 10, 809763.	1.3	6
3	A Case for Systematic Quality Management in Mosquito Control Programmes in Europe. International Journal of Environmental Research and Public Health, 2021, 18, 3478.	1.2	8
4	Informing Rift Valley Fever preparedness by mapping seasonally varying environmental suitability. International Journal of Infectious Diseases, 2020, 99, 362-372.	1.5	9
5	RVF vector spatial distribution models: Probability of presence. EFSA Supporting Publications, 2020, 17, 1800E.	0.3	9
6	Dynamics of conflict during the Ebola outbreak in the Democratic Republic of the Congo 2018–2019. BMC Medicine, 2020, 18, 113.	2.3	23
7	RVF vector spatial distribution models: vector abundance. EFSA Supporting Publications, 2020, 17, 1847E.	0.3	6
8	Composition and seasonality of Culicoides in three host environments in Rabat region (Morocco). Revue D'Elevage Et De Medecine Veterinaire Des Pays Tropicaux, 2020, 73, 37-46.	0.2	1
9	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	5.9	645
10	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	5.9	699
11	Using imperfect data in predictive mapping of vectors: a regional example of Ixodes ricinus distribution. Parasites and Vectors, 2019, 12, 536.	1.0	4
12	Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa. Sustainability, 2018, 10, 1633.	1.6	13
13	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	6.0	279
14	Predictive gravity models of livestock mobility in Mauritania: The effects of supply, demand and cultural factors. PLoS ONE, 2018, 13, e0199547.	1.1	27
15	Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Scientific Data, 2018, 5, 180227.	2.4	342
16	Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales. Stochastic Environmental Research and Risk Assessment, 2017, 31, 339-352.	1.9	14
17	Drivers of Rift Valley fever epidemics in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 938-943.	3.3	41
18	Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infectious Diseases, The, 2017, 17, 330-338.	4.6	185

G R WILLIAM WINT

#	Article	IF	CITATIONS
19	Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae. PLoS ONE, 2017, 12, e0183132.	1.1	9
20	Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland. Parasites and Vectors, 2017, 10, 466.	1.0	20
21	Mapping Disease Data: A Usability Test of an Internet-Based System of Disease Status Disclosure. Frontiers in Veterinary Science, 2017, 4, 230.	0.9	3
22	Using Random Forest to Improve the Downscaling of Global Livestock Census Data. PLoS ONE, 2016, 11, e0150424.	1.1	55
23	Perspectives on modelling the distribution of ticks for large areas: so far so good?. Parasites and Vectors, 2016, 9, 179.	1.0	39
24	Progress and Challenges in Infectious Disease Cartography. Trends in Parasitology, 2016, 32, 19-29.	1.5	85
25	25. Grasping risk mapping. Ecology and Control of Vector-Borne Diseases, 2016, , 351-371.	0.3	5
26	VBORNET gap analysis: Mosquito vector distribution models utilised to identify areas of potential species distribution in areas lacking records Open Health Data, 2016, 4, 6.	3.7	6
27	VBORNET Gap Analysis: Sand Fly Vector Distribution Models Utilised to Identify Areas of Potential Species Distribution in Areas Lacking Records. Open Health Data, 2016, 4, 5.	3.7	1
28	The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data, 2015, 2, 150035.	2.4	271
29	Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs. PLoS ONE, 2015, 10, e0133381.	1.1	98
30	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	2.8	1,428
31	Mapping the benefit-cost ratios of interventions against bovine trypanosomosis in Eastern Africa. Preventive Veterinary Medicine, 2015, 122, 406-416.	0.7	36
32	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	13.6	145
33	The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 503-513.	0.7	193
34	Climate Change and Public Health Policy: Translating the Science. International Journal of Environmental Research and Public Health, 2014, 11, 13-29.	1.2	18
35	Mapping the Global Distribution of Livestock. PLoS ONE, 2014, 9, e96084.	1.1	590
36	Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications, 2014, 5, 4116.	5.8	145

G R WILLIAM WINT

#	Article	IF	CITATIONS
37	Mapping the economic benefits to livestock keepers from intervening against bovine trypanosomosis in Eastern Africa. Preventive Veterinary Medicine, 2014, 113, 197-210.	0.7	145
38	FraRI: an algorithm to account for the discontinuity at 60° N in MODIS temperature products. International Journal of Remote Sensing, 2013, 34, 1220-1233.	1.3	0
39	The global distribution and burden of dengue. Nature, 2013, 496, 504-507.	13.7	7,138
40	Modelling the distribution of chickens, ducks, and geese in China. Agriculture, Ecosystems and Environment, 2011, 141, 381-389.	2.5	33
41	Modelling the distribution of domestic ducks in Monsoon Asia. Agriculture, Ecosystems and Environment, 2011, 141, 373-380.	2.5	32
42	Geographic distribution and environmental characterization of livestock production systems in Eastern Africa. Agriculture, Ecosystems and Environment, 2010, 135, 98-110.	2.5	63
43	Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data. PLoS ONE, 2008, 3, e1408.	1.1	218
44	Veterinary Web-geographic information systems: what's the point and what's involved?. Veterinaria Italiana, 2007, 43, 709-21.	0.5	0