
Yi-Tao Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A graphene-based fluorescent nanoprobe for silver(i) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chemical Communications, 2010, 46, 2596.	2.2	455
2	Recent developments and applications of screen-printed electrodes in environmental assays—A review. Analytica Chimica Acta, 2012, 734, 31-44.	2.6	434
3	Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Science Advances, 2018, 4, eaat8192.	4.7	422
4	Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nature Nanotechnology, 2016, 11, 713-718.	15.6	333
5	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. Angewandte Chemie - International Edition, 2011, 50, 11994-11998.	7.2	306
6	Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nature Methods, 2007, 4, 1015-1017.	9.0	303
7	Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. Journal of Materials Chemistry, 2010, 20, 1772.	6.7	294
8	New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 1343-1349.	1.5	272
9	Transport of α-Helical Peptides through α-Hemolysin and Aerolysin Pores. Biochemistry, 2006, 45, 9172-9179.	1.2	254
10	Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochimica Acta, 2014, 181, 23-43.	2.5	239
11	Nanoporeâ€Based Sequencing and Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2013, 52, 13154-13161.	7.2	236
12	Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. Journal of the American Chemical Society, 2018, 140, 5385-5392.	6.6	209
13	New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 1736.	15.6	195
14	Batch fabrication of disposable screen printed SERS arrays. Lab on A Chip, 2012, 12, 876-881.	3.1	188
15	Efficient Passivation of Hybrid Perovskite Solar Cells Using Organic Dyes with COOH Functional Group. Advanced Energy Materials, 2018, 8, 1800715.	10.2	187
16	Confined Nanopipette Sensing: From Single Molecules, Single Nanoparticles, to Single Cells. Angewandte Chemie - International Edition, 2019, 58, 3706-3714.	7.2	185
17	Structure of Peptides Investigated by Nanopore Analysis. Nano Letters, 2004, 4, 1273-1277.	4.5	180
18	Plasmon Resonance Scattering Spectroscopy at the Singleâ€Nanoparticle Level: Realâ€Time Monitoring of a Click Reaction. Angewandte Chemie - International Edition. 2013. 52. 6011-6014.	7.2	178

#	Article	IF	CITATIONS
19	Nanochannels of Covalent Organic Frameworks for Chiral Selective Transmembrane Transport of Amino Acids. Journal of the American Chemical Society, 2019, 141, 20187-20197.	6.6	175
20	Resonance scattering particles as biological nanosensors in vitro and in vivo. Chemical Society Reviews, 2012, 41, 632-642.	18.7	166
21	Electrochemical Sensing at a Confined Space. Analytical Chemistry, 2020, 92, 5621-5644.	3.2	158
22	Ultrasensitive Determination of Cysteine Based on the Photocurrent of Nafionâ€Functionalized CdS–MV Quantum Dots on an ITO Electrode. Small, 2011, 7, 1624-1628.	5.2	156
23	Facile On-Site Detection of Substituted Aromatic Pollutants in Water Using Thin Layer Chromatography Combined with Surface-Enhanced Raman Spectroscopy. Environmental Science & Technology, 2011, 45, 4046-4052.	4.6	155
24	Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag–graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2013, 43, 94-100.	5.3	152
25	Bithiazole-bridged dyes for dye-sensitized solar cells with high open circuit voltage performance. Journal of Materials Chemistry, 2011, 21, 6054.	6.7	150
26	Single Gold Nanoparticles as Realâ€Time Optical Probes for the Detection of NADHâ€Dependent Intracellular Metabolic Enzymatic Pathways. Angewandte Chemie - International Edition, 2011, 50, 6789-6792.	7.2	144
27	Design of a gold nanoprobe for rapid and portable mercury detection with the naked eye. Chemical Communications, 2008, , 4885.	2.2	143
28	Nanopore Analysis of β-Amyloid Peptide Aggregation Transition Induced by Small Molecules. Analytical Chemistry, 2011, 83, 1746-1752.	3.2	140
29	Nanopore-Based Single-Biomolecule Interfaces: From Information to Knowledge. Journal of the American Chemical Society, 2019, 141, 15720-15729.	6.6	137
30	Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Accounts of Chemical Research, 2018, 51, 331-341.	7.6	130
31	New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells. Dyes and Pigments, 2012, 92, 1384-1393.	2.0	127
32	Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chemical Science, 2017, 8, 1854-1861.	3.7	127
33	Surface-imprinted core–shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering. Analytica Chimica Acta, 2013, 777, 57-62.	2.6	126
34	Monitoring of Endogenous Hydrogen Sulfide in Living Cells Using Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2015, 54, 12758-12761.	7.2	122
35	Peptide Electron Transfer: More Questions than Answers. Chemistry - A European Journal, 2005, 11, 5186-5194.	1.7	119
36	Disposable biosensor based on graphene oxide conjugated with tyrosinase assembled gold nanoparticles. Biosensors and Bioelectronics, 2011, 26, 3181-3186.	5.3	118

#	Article	IF	CITATIONS
37	Chrominance to Dimension: A Real-Time Method for Measuring the Size of Single Gold Nanoparticles. Analytical Chemistry, 2012, 84, 4284-4291.	3.2	116
38	Fluorogenic Probing of Specific Recognitions between Sugar Ligands and Glycoprotein Receptors on Cancer Cells by an Economic Graphene Nanocomposite. Advanced Materials, 2013, 25, 4097-4101.	11.1	113
39	Advanced electroanalytical chemistry at nanoelectrodes. Chemical Science, 2017, 8, 3338-3348.	3.7	110
40	Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega, 2019, 4, 7543-7549.	1.6	108
41	Redox-Mediated Indirect Fluorescence Immunoassay for the Detection of Disease Biomarkers Using Dopamine-Functionalized Quantum Dots. Analytical Chemistry, 2016, 88, 5131-5136.	3.2	107
42	Biological Nanopore Approach for Singleâ€Molecule Protein Sequencing. Angewandte Chemie - International Edition, 2021, 60, 14738-14749.	7.2	106
43	Portable Surface-Enhanced Raman Scattering Sensor for Rapid Detection of Aniline and Phenol Derivatives by On-Site Electrostatic Preconcentration. Analytical Chemistry, 2010, 82, 9299-9305.	3.2	105
44	Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl. Corrosion Science, 2012, 57, 220-227.	3.0	105
45	Muscle-like Artificial Molecular Actuators for Nanoparticles. CheM, 2018, 4, 2670-2684.	5.8	99
46	Electrochemical Detection of Single-Nucleotide Mismatches:Â Application of M-DNA. Analytical Chemistry, 2004, 76, 4059-4065.	3.2	97
47	AC Impedance Spectroscopy of Native DNA and M-DNA. Biophysical Journal, 2003, 84, 3218-3225.	0.2	94
48	A Comparison of Electron-Transfer Rates of Ferrocenoyl-Linked DNA. Journal of the American Chemical Society, 2003, 125, 8724-8725.	6.6	93
49	Simultaneous determination of dihydroxybenzene isomers using disposable screen-printed electrode modified by multiwalled carbon nanotubes and gold nanoparticles. Analytical Methods, 2010, 2, 837.	1.3	93
50	Single molecule analysis by biological nanopore sensors. Analyst, The, 2014, 139, 3826-3835.	1.7	93
51	Accurate Data Process for Nanopore Analysis. Analytical Chemistry, 2015, 87, 907-913.	3.2	92
52	Highly Selective Detection of Carbon Monoxide in Living Cells by Palladacycle Carbonylation-Based Surface Enhanced Raman Spectroscopy Nanosensors. Analytical Chemistry, 2015, 87, 9696-9701.	3.2	92
53	Using a Multi‣helled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€ŧoâ€Host and Guestâ€ŧoâ€Guest Interactions. Angewandte Chemie - International Edition, 2018, 57, 2110-2114.	7.2	91
54	Monitoring of an ATPâ€Binding Aptamer and its Conformational Changes Using an αâ€Hemolysin Nanopore. Small, 2011, 7, 87-94.	5.2	90

#	Article	IF	CITATIONS
55	New Insights into Electrocatalysis Based on Plasmon Resonance for the Real-Time Monitoring of Catalytic Events on Single Gold Nanorods. Analytical Chemistry, 2014, 86, 5513-5518.	3.2	90
56	0D–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1605646.	11.1	89
57	Multiple depositions of Ag nanoparticles on chemically modified agarose films for surface-enhanced Raman spectroscopy. Nanoscale, 2012, 4, 137-142.	2.8	87
58	Wireless Bipolar Nanopore Electrode for Single Small Molecule Detection. Analytical Chemistry, 2017, 89, 7382-7387.	3.2	84
59	Quantifying Visible-Light-Induced Electron Transfer Properties of Single Dye-Sensitized ZnO Entity for Water Splitting. Journal of the American Chemical Society, 2018, 140, 5272-5279.	6.6	84
60	Stochastic Collision Nanoelectrochemistry: A Review of Recent Developments. ChemElectroChem, 2017, 4, 977-985.	1.7	83
61	Narrowing band gap of platinum acetylide dye-sensitized solar cell sensitizers with thiophene ï€-bridges. Journal of Materials Chemistry, 2012, 22, 5382.	6.7	82
62	A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. Angewandte Chemie - International Edition, 2018, 57, 1011-1015.	7.2	82
63	D–π–M–Ĩ€â€"A structured platinum acetylide sensitizer for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 10666.	6.7	80
64	Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. Journal of Materials Chemistry, 2010, 20, 3688.	6.7	79
65	Alcohol Dehydrogenase-Catalyzed Gold Nanoparticle Seed-Mediated Growth Allows Reliable Detection of Disease Biomarkers with the Naked Eye. Analytical Chemistry, 2015, 87, 5891-5896.	3.2	78
66	Simultaneous determination of cadmium(II), lead(II) and copper(II) by using a screen-printed electrode modified with mercury nano-droplets. Mikrochimica Acta, 2010, 169, 321-326.	2.5	76
67	An OFF–ON fluorescent probe for Zn2+ based on a GFP-inspired imidazolone derivative attached to a 1,10-phenanthroline moiety. Chemical Communications, 2011, 47, 4361.	2.2	75
68	Epimeric Monosaccharideâ^'Quinone Hybrids on Gold Electrodes toward the Electrochemical Probing of Specific Carbohydrateâ^'Protein Recognitions. Journal of the American Chemical Society, 2011, 133, 3649-3657.	6.6	75
69	Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl. Corrosion Science, 2012, 64, 64-73.	3.0	75
70	Direct sensing of cancer biomarkers in clinical samples with a designed nanopore. Chemical Communications, 2017, 53, 11564-11567.	2.2	72
71	Modulation of energy levels by donor groups: an effective approach for optimizing the efficiency of zinc-porphyrin based solar cells. Journal of Materials Chemistry, 2012, 22, 7434.	6.7	70
72	A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations. Analyst, The, 2013, 138, 7146.	1.7	70

#	Article	IF	CITATIONS
73	Analysis of a Single α-Synuclein Fibrillation by the Interaction with a Protein Nanopore. Analytical Chemistry, 2013, 85, 8254-8261.	3.2	67
74	Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Nature Communications, 2020, 11, 2307.	5.8	67
75	Quinone/hydroquinone-functionalized biointerfaces for biological applications from the macro- to nano-scale. Chemical Society Reviews, 2014, 43, 30-41.	18.7	66
76	Reversible Redox of NADH and NAD+at a Hybrid Lipid Bilayer Membrane Using Ubiquinone. Journal of the American Chemical Society, 2011, 133, 12366-12369.	6.6	64
77	Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 24063-24068.	4.0	64
78	A single biomolecule interface for advancing the sensitivity, selectivity and accuracy of sensors. National Science Review, 2018, 5, 450-452.	4.6	64
79	Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332.	7.2	64
80	Single Nanoparticle Electrochemistry. Annual Review of Analytical Chemistry, 2019, 12, 347-370.	2.8	63
81	Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis. Analytical Chemistry, 2018, 90, 7790-7794.	3.2	61
82	Single plasmonic nanoparticles as ultrasensitive sensors. Analyst, The, 2017, 142, 409-420.	1.7	60
83	Mapping the sensing spots of aerolysin for single oligonucleotides analysis. Nature Communications, 2018, 9, 2823.	5.8	60
84	Single molecule sensing of amyloid-β aggregation by confined glass nanopores. Chemical Science, 2019, 10, 10728-10732.	3.7	60
85	Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons. Analyst, The, 2013, 138, 1523.	1.7	58
86	A Stimuli-Responsive Nanopore Based on a Photoresponsive Host-Guest System. Scientific Reports, 2013, 3, 1662.	1.6	58
87	Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nature Protocols, 2013, 8, 439-450.	5.5	57
88	Single-molecule analysis in an electrochemical confined space. Science China Chemistry, 2017, 60, 1187-1190.	4.2	56
89	Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Scientific Reports, 2013, 3, 1537.	1.6	55
90	Single molecule analysis of light-regulated RNA:spiropyran interactions. Chemical Science, 2014, 5, 2642.	3.7	55

#	Article	IF	CITATIONS
91	Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis. ACS Sensors, 2018, 3, 779-783.	4.0	55
92	Detection of Peptides with Different Charges and Lengths by Using the Aerolysin Nanopore. ChemElectroChem, 2019, 6, 126-129.	1.7	55
93	Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes. Journal of Physical Chemistry B, 2003, 107, 2291-2296.	1.2	54
94	CdSe/ZnS quantum dot–Cytochrome c bioconjugates for selective intracellular O2Ë™â^' sensing. Chemical Communications, 2011, 47, 8539.	2.2	54
95	Singleâ€Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO ₂ â€Filmed Ultramicroelectrode. Angewandte Chemie - International Edition, 2018, 57, 3758-3762.	7.2	54
96	Selective and Sensitive Detection of Methylcytosine by Aerolysin Nanopore under Serum Condition. Analytical Chemistry, 2017, 89, 11685-11689.	3.2	52
97	Single antibody–antigen interactions monitored via transient ionic current recording using nanopore sensors. Chemical Communications, 2017, 53, 8620-8623.	2.2	52
98	Glucose selective Surface Plasmon Resonance-based bis-boronic acid sensor. Analyst, The, 2013, 138, 7140.	1.7	51
99	Driven Translocation of Polynucleotides Through an Aerolysin Nanopore. Analytical Chemistry, 2016, 88, 5046-5049.	3.2	51
100	Label-Free Monitoring of Single Molecule Immunoreaction with a Nanopipette. Analytical Chemistry, 2017, 89, 8203-8206.	3.2	51
101	Revisiting the Origin of Nanopore Current Blockage for Volume Difference Sensing at the Atomic Level. Jacs Au, 2021, 1, 967-976.	3.6	51
102	Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chemical Communications, 2012, 48, 9574.	2.2	50
103	New Organic Donor–Acceptor–π–Acceptor Sensitizers for Efficient Dyeâ€Sensitized Solar Cells and Photocatalytic Hydrogen Evolution under Visible‣ight Irradiation. ChemSusChem, 2014, 7, 2879-2888.	3.6	50
104	Facile Fabrication of a Silver Dendrite-Integrated Chip for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2015, 7, 2931-2936.	4.0	50
105	Color-coded imaging of electrochromic process at single nanoparticle level. Chemical Science, 2016, 7, 5347-5351.	3.7	50
106	Binary System for MicroRNA-Targeted Imaging in Single Cells and Photothermal Cancer Therapy. Analytical Chemistry, 2016, 88, 8640-8647.	3.2	50
107	Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12, 1901-1911.	5.5	50
108	Electrodeposition of Singleâ€Metal Nanoparticles on Stable Proteinâ€1 Membranes: Application of Plasmonic Sensing by Single Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 140-144.	7.2	49

#	Article	IF	CITATIONS
109	Electrochemical Confinement Effects for Innovating New Nanopore Sensing Mechanisms. Small Methods, 2018, 2, 1700390.	4.6	49
110	Manipulating and visualizing the dynamic aggregation-induced emission within a confined quartz nanopore. Nature Communications, 2018, 9, 3657.	5.8	49
111	Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance. Science China Chemistry, 2011, 54, 699-706.	4.2	48
112	SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system. Analyst, The, 2016, 141, 4359-4365.	1.7	48
113	A Scattering Nanopore for Single Nanoentity Sensing. ACS Sensors, 2016, 1, 1086-1090.	4.0	48
114	Wireless nanopore electrodes for analysis of single entities. Nature Protocols, 2019, 14, 2015-2035.	5.5	48
115	Enhanced translocation of poly(dt)45 through an α-hemolysin nanopore by binding with antibody. Chemical Communications, 2011, 47, 5690.	2.2	47
116	M-DNA: A Self-Assembling Molecular Wire for Nanoelectronics and Biosensing Analytical Sciences, 2003, 19, 23-26.	0.8	46
117	Expeditious preparation of triazole-linked glycolipids via microwave accelerated click chemistry and their electrochemical and biological assessments. Tetrahedron, 2010, 66, 9974-9980.	1.0	46
118	Cisplatin effects on evolution of reactive oxygen species from single human bladder cancer cells investigated by scanning electrochemical microscopy. Journal of Inorganic Biochemistry, 2012, 108, 115-122.	1.5	46
119	Metal-linked Immunosorbent Assay (MeLISA): the Enzyme-Free Alternative to ELISA for Biomarker Detection in Serum. Theranostics, 2016, 6, 1732-1739.	4.6	46
120	A Twoâ€Stage Dissociation System for Multilayer Imaging of Cancer Biomarkerâ€Synergic Networks in Single Cells. Angewandte Chemie - International Edition, 2017, 56, 4802-4805.	7.2	46
121	Real-time monitoring of the aging of single plasmonic copper nanoparticles. Chemical Communications, 2012, 48, 1511-1513.	2.2	45
122	Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics, 2017, 7, 876-883.	4.6	45
123	Low temperature synthesis and SERS application of silver molybdenum oxides. Journal of Materials Chemistry A, 2013, 1, 2558.	5.2	43
124	Electrocatalytic Efficiency Analysis of Catechol Molecules for NADH Oxidation during Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8375-8379.	3.2	42
125	Real-Time Plasmonic Monitoring of Single Gold Amalgam Nanoalloy Electrochemical Formation and Stripping. ACS Applied Materials & Interfaces, 2016, 8, 8305-8314.	4.0	42
126	Capturing intercellular sugar-mediated ligand-receptor recognitions via a simple yet highly biospecific interfacial system. Scientific Reports, 2013, 3, 2293.	1.6	41

#	Article	IF	CITATIONS
127	Colorimetric and Plasmonic Detection of Lectins Using Core–Shell Gold Glyconanoparticles Prepared by Copper-Free Click Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 1874-1878.	4.0	41
128	Characterization of DNA duplex unzipping through a sub-2 nm solid-state nanopore. Chemical Communications, 2017, 53, 3539-3542.	2.2	41
129	Investigation of Silver Nanoparticle Induced Lipids Changes on a Single Cell Surface by Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2018, 90, 1072-1076.	3.2	41
130	Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Research, 2018, 11, 1379-1388.	5.8	41
131	Localized Surface Plasmon Resonance Based Nanobiosensors. Springer Briefs in Molecular Science, 2014, , .	0.1	40
132	<i>In situ</i> High Throughput Scattering Light Analysis of Single Plasmonic Nanoparticles in Living Cells. Theranostics, 2015, 5, 188-195.	4.6	40
133	Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chemical Science, 2015, 6, 1996-2001.	3.7	40
134	Wearable Chemosensors: A Review of Recent Progress. ChemistryOpen, 2018, 7, 118-130.	0.9	40
135	T232K/K238Q Aerolysin Nanopore for Mapping Adjacent Phosphorylation Sites of a Single Tau Peptide. Small Methods, 2020, 4, 2000014.	4.6	40
136	Brightening Gold Nanoparticles: New Sensing Approach Based on Plasmon Resonance Energy Transfer. Scientific Reports, 2015, 5, 10142.	1.6	39
137	Direct Readout of Single Nucleobase Variations in an Oligonucleotide. Small, 2017, 13, 1702011.	5.2	39
138	Dualâ€Targeting Nanovesicles for Inâ€Situ Intracellular Imaging of and Discrimination between Wildâ€ŧype and Mutant p53. Angewandte Chemie - International Edition, 2016, 55, 719-723.	7.2	38
139	A Wild-Type Nanopore Sensor for Protein Kinase Activity. Analytical Chemistry, 2019, 91, 9910-9915.	3.2	38
140	Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.	4.2	38
141	Coenzymeâ€Q Functionalized CdTe/ZnS Quantum Dots for Reactive Oxygen Species (ROS) Imaging. Chemistry - A European Journal, 2011, 17, 5262-5271.	1.7	37
142	Simultaneous determination of Hg(II) and Zn(II) using a GFP inspired chromophore. Talanta, 2012, 100, 401-404.	2.9	37
143	Recent advances in real-time and in situ analysis of an electrode–electrolyte interface by mass spectrometry. Analyst, The, 2017, 142, 691-699.	1.7	37
144	Biological Nanopore Approach for Singleâ€Molecule Protein Sequencing. Angewandte Chemie, 2021, 133, 14862-14873.	1.6	37

#	Article	IF	CITATIONS
145	Single-molecule DNA detection using a novel SP1 protein nanopore. Chemical Communications, 2013, 49, 1741.	2.2	36
146	Single Ag Nanoparticle Electro-oxidation: Potential-Dependent Current Traces and Potential-Independent Electron Transfer Kinetic. Journal of Physical Chemistry Letters, 2018, 9, 1429-1433.	2.1	36
147	Snapshotting the transient conformations and tracing the multiple pathways of single peptide folding using a solid-state nanopore. Chemical Science, 2021, 12, 3282-3289.	3.7	36
148	Target-Specific Imaging of Transmembrane Receptors Using Quinonyl Glycosides Functionalized Quantum Dots. Analytical Chemistry, 2014, 86, 5502-5507.	3.2	35
149	Simultaneous single-molecule discrimination of cysteine and homocysteine with a protein nanopore. Chemical Communications, 2019, 55, 9311-9314.	2.2	35
150	A lithium-ion-active aerolysin nanopore for effectively trapping long single-stranded DNA. Chemical Science, 2019, 10, 354-358.	3.7	35
151	Detection of Single Proteins with a General Nanopore Sensor. ACS Sensors, 2019, 4, 1185-1189.	4.0	35
152	Understanding the Selectivity of a Multichannel Fluorescent Probe for Peroxynitrite Over Hypochlorite. Bioconjugate Chemistry, 2016, 27, 341-353.	1.8	34
153	Mussel-Inspired Polydopamine Functionalized Plasmonic Nanocomposites for Single-Particle Catalysis. ACS Applied Materials & Interfaces, 2017, 9, 3016-3023.	4.0	34
154	Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter. Analytica Chimica Acta, 2017, 989, 1-14.	2.6	34
155	Real-Time and Accurate Identification of Single Oligonucleotide Photoisomers via an Aerolysin Nanopore. Analytical Chemistry, 2018, 90, 4268-4272.	3.2	34
156	Nanopore confinement for electrochemical sensing at the single-molecule level. Current Opinion in Electrochemistry, 2018, 7, 172-178.	2.5	34
157	High Sensitive On-Site Cadmium Sensor Based on AuNPs Amalgam Modified Screen-Printed Carbon Electrodes. IEEE Sensors Journal, 2010, 10, 1583-1588.	2.4	33
158	Evaluation of an immobilized artificial carbonic anhydrase model for CO2 sequestration. Chemical Science, 2011, 2, 1515.	3.7	33
159	A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(ii) detection. Analyst, The, 2014, 139, 6435-6439.	1.7	33
160	Raman/fluorescence dual-sensing and imaging of intracellular pH distribution. Chemical Communications, 2015, 51, 17584-17587.	2.2	33
161	High-bandwidth nanopore data analysis by using a modified hidden Markov model. Nanoscale, 2017, 9, 3458-3465.	2.8	33
162	Intelligent identification of multi-level nanopore signatures for accurate detection of cancer biomarkers. Chemical Communications, 2017, 53, 10176-10179.	2.2	33

#	Article	IF	CITATIONS
163	A Time-Resolved Single-Molecular Train Based on Aerolysin Nanopore. CheM, 2018, 4, 1893-1901.	5.8	33
164	Monitoring Dopamine Quinone-Induced Dopaminergic Neurotoxicity Using Dopamine Functionalized Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 14352-14358.	4.0	32
165	Measuring a frequency spectrum for single-molecule interactions with a confined nanopore. Faraday Discussions, 2018, 210, 87-99.	1.6	32
166	Electrochemical regeneration of coenzyme NADH on a histidine modified silver electrode. Journal of Electroanalytical Chemistry, 1997, 440, 239-242.	1.9	31
167	Dynamics of a Molecular Plug Docked onto a Solid-State Nanopore. Journal of Physical Chemistry Letters, 2018, 9, 4686-4694.	2.1	31
168	Protein–DNA interaction: impedance study of MutS binding to a DNA mismatch. Chemical Communications, 2004, , 574-575.	2.2	30
169	Concise Cu ^I -Catalyzed Azide–Alkyne 1,3-Dipolar Cycloaddition Reaction Ligation Remarkably Enhances the Corrosion Inhibitive Potency of Natural Amino Acids for Mild Steel in HCl. Industrial & Engineering Chemistry Research, 2012, 51, 7160-7169.	1.8	30
170	Dynamic Selfâ€Assembly of Homogenous Microcyclic Structures Controlled by a Silver oated Nanopore. Small, 2017, 13, 1700234.	5.2	30
171	Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles. Small, 2017, 13, 1601955.	5.2	30
172	Learning Shapelets for Improving Single-Molecule Nanopore Sensing. Analytical Chemistry, 2019, 91, 10033-10039.	3.2	30
173	Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie, 2019, 131, 6393-6398.	1.6	30
174	Direct Quantification of Damaged Nucleotides in Oligonucleotides Using an Aerolysin Single Molecule Interface. ACS Central Science, 2020, 6, 76-82.	5.3	30
175	Recognizing the translocation signals of individual peptide–oligonucleotide conjugates using an α-hemolysin nanopore. Chemical Communications, 2012, 48, 8784.	2.2	29
176	A precise pointing nanopipette for single-cell imaging via electroosmotic injection. Chemical Communications, 2016, 52, 13909-13911.	2.2	29
177	Analyzing Carbohydrate–Protein Interaction Based on Single Plasmonic Nanoparticle by Conventional Dark Field Microscopy. ACS Applied Materials & Interfaces, 2015, 7, 12249-12253.	4.0	28
178	Real-time monitoring for the morphological variations of single gold nanorods. Nanoscale, 2015, 7, 511-517.	2.8	28
179	Ultrafast Mapping of Subcellular Domains via Nanopipette-Based Electroosmotically Modulated Delivery into a Single Living Cell. Analytical Chemistry, 2018, 90, 13744-13750.	3.2	28
180	Confined Nanopipette-A new microfluidic approach for single cell analysis. TrAC - Trends in Analytical Chemistry, 2019, 117, 39-46.	5.8	27

#	Article	IF	CITATIONS
181	Revealing the transient conformations of a single flavin adenine dinucleotide using an aerolysin nanopore. Chemical Science, 2019, 10, 10400-10404.	3.7	27
182	Redox reactions of reactive oxygen species in aqueous solutions as the probe for scanning electrochemical microscopy of single live T24 cells. Canadian Journal of Chemistry, 2010, 88, 569-576.	0.6	26
183	Imaging electrocatalytic processes on single gold nanorods. Faraday Discussions, 2016, 193, 371-385.	1.6	26
184	Single molecule study of initial structural features on the amyloidosis process. Chemical Communications, 2016, 52, 5542-5545.	2.2	26
185	Structural stability of the photo-responsive DNA duplexes containing one azobenzene via a confined pore. Chemical Communications, 2017, 53, 9462-9465.	2.2	26
186	Characterization of the Dynamic Growth of the Nanobubble within the Confined Glass Nanopore. Analytical Chemistry, 2018, 90, 12352-12355.	3.2	26
187	A Nanopore Phosphorylation Sensor for Single Oligonucleotides and Peptides. Research, 2019, 2019, 1050735.	2.8	26
188	Rearrangement of the Active Ester Intermediate During HOBt/EDC Amide Coupling. European Journal of Inorganic Chemistry, 2005, 2005, 173-180.	1.0	25
189	Single-molecule analysis of the self-assembly process facilitated by host–guest interactions. Chemical Communications, 2015, 51, 1202-1205.	2.2	25
190	Monitoring Hydrogen Evolution Reaction Catalyzed by MoS ₂ Quantum Dots on a Single Nanoparticle Electrode. Analytical Chemistry, 2019, 91, 10361-10365.	3.2	25
191	The analysis of single cysteine molecules with an aerolysin nanopore. Analyst, The, 2020, 145, 1179-1183.	1.7	25
192	Cu@Ag/ \hat{l}^2 -AgVO3 as a SERS substrate for the trace level detection of carbamate pesticides. Analytical Methods, 2012, 4, 3785.	1.3	24
193	Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry. Journal of the American Chemical Society, 2021, 143, 12428-12432.	6.6	24
194	Ferrocene-modified pyrimidine nucleosides: synthesis, structure and electrochemistry. Dalton Transactions, 2006, , 4696.	1.6	23
195	In situ spectroeletrochemistry and cytotoxic activities of natural ubiquinone analogues. Tetrahedron, 2011, 67, 5990-6000.	1.0	23
196	Ion-selective gold–thiol film on integrated screen-printed electrodes for analysis of Cu(<scp>ii</scp>) ions. Analyst, The, 2014, 139, 643-648.	1.7	23
197	Evidence of single-nanoparticle translocation through a solid-state nanopore by plasmon resonance energy transfer. Chemical Communications, 2016, 52, 5230-5233.	2.2	23
198	In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chemical Communications, 2016, 52, 1044-1047.	2.2	23

#	Article	IF	CITATIONS
199	Ultra-low noise measurements of nanopore-based single molecular detection. Science Bulletin, 2017, 62, 1245-1250.	4.3	23
200	Singleâ€Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions. Chemistry - A European Journal, 2018, 24, 13064-13071.	1.7	23
201	Enhanced identification of Tau acetylation and phosphorylation with an engineered aerolysin nanopore. Proteomics, 2022, 22, e2100041.	1.3	23
202	Filming a live cell by scanning electrochemical microscopy: label-free imaging of the dynamic morphology in real time. Chemistry Central Journal, 2012, 6, 20.	2.6	22
203	Research on the structure–surface adsorptive activity relationships of triazolyl glycolipid derivatives for mild steel in HCl. Carbohydrate Research, 2012, 354, 32-39.	1.1	22
204	Quick Serological Detection of a Cancer Biomarker with an Agglutinated Supramolecular Glycoprobe. Analytical Chemistry, 2015, 87, 9078-9083.	3.2	22
205	Dual-channel signals for intracellular mRNA detection via a PRET nanosensor. Chemical Communications, 2017, 53, 7768-7771.	2.2	22
206	Nanopore sensing system for high-throughput single molecular analysis. Science China Chemistry, 2018, 61, 1483-1485.	4.2	22
207	Intrinsic Electrocatalytic Activity of Gold Nanoparticles Measured by Single Entity Electrochemistry. ChemElectroChem, 2018, 5, 2982-2985.	1.7	22
208	Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: where does the gold go?. Chemical Science, 2019, 10, 6215-6219.	3.7	22
209	Enzyme-free amplified SERS immunoassay for the ultrasensitive detection of disease biomarkers. Chemical Communications, 2020, 56, 2933-2936.	2.2	22
210	Using a Multiâ€6helled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€ŧoâ€Host and Guestâ€ŧoâ€Guest Interactions. Angewandte Chemie, 2018, 130, 2132-2136.	1.6	22
211	An integrated current measurement system for nanopore analysis. Science Bulletin, 2014, 59, 4968-4973.	1.7	21
212	Optical monitoring of faradaic reaction using single plasmon-resonant nanorods functionalized with graphene. Chemical Communications, 2015, 51, 3223-3226.	2.2	21
213	An Ultrasensitive Plasmonic Nanosensor for Aldehydes. ACS Sensors, 2017, 2, 263-267.	4.0	21
214	A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure. Small, 2018, 14, e1704520.	5.2	21
215	Singleâ€Entity Electrochemistry: Fundamentals and Applications. ChemElectroChem, 2018, 5, 2918-2919.	1.7	21
216	Detektieren mit Nanopipetten im eingeschrÄ ¤ kten Raum: von einzelnen Molekülen über Nanopartikel hin zu der Zelle. Angewandte Chemie, 2019, 131, 3744-3752.	1.6	21

#	Article	IF	CITATIONS
217	An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nature Protocols, 2019, 14, 2672-2690.	5.5	21
218	Graphene quantum dots enhanced ToF-SIMS for single-cell imaging. Analytical and Bioanalytical Chemistry, 2019, 411, 4025-4030.	1.9	21
219	Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. Journal of Physical Chemistry Letters, 2022, 13, 4653-4659.	2.1	21
220	Enhanced Resolution of Low Molecular Weight Poly(Ethylene Glycol) in Nanopore Analysis. Analytical Chemistry, 2014, 86, 11946-11950.	3.2	20
221	Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2015, 69, 1-7.	5.3	20
222	Plasmon resonance scattering at perovskite CH ₃ NH ₃ PbI ₃ coated single gold nanoparticles: evidence for electron transfer. Chemical Communications, 2016, 52, 9933-9936.	2.2	20
223	Real-Time Sensing of O-Phenylenediamine Oxidation on Gold Nanoparticles. Sensors, 2017, 17, 530.	2.1	20
224	Controllable Aggregation-Induced Exocytosis Inhibition (CAIEI) of Plasmonic Nanoparticles in Cancer Cells Regulated by MicroRNA. Molecular Pharmaceutics, 2018, 15, 4031-4037.	2.3	20
225	Diversified exploitation of aerolysin nanopore in singleâ€molecule sensing and protein sequencing. View, 2020, 1, 20200006.	2.7	20
226	Single Molecule Study of the Weak Biological Interactions Between P53 and DNA. Acta Chimica Sinica, 2013, 71, 44.	0.5	20
227	Study of biomolecules by combining electrochemistry with UV/Vis, IR and surface enhanced Raman scattering spectroscopy by a novel flow microcell. Analytica Chimica Acta, 1999, 382, 171-177.	2.6	19
228	SERS sensing of sulfide based on the sulfidation of silver nanoparticles. Analytical Methods, 2013, 5, 6579.	1.3	19
229	Sensing cisplatin-induced permeation of single live human bladder cancer cells by scanning electrochemical microscopy. Analyst, The, 2015, 140, 6054-6060.	1.7	19
230	Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS Applied Materials & Interfaces, 2016, 8, 25137-25141.	4.0	19
231	<i>In situ</i> and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH ₃ NH ₃ Pbl ₃ . Chemical Communications, 2018, 54, 5434-5437.	2.2	19
232	Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 11799-11803.	1.7	19
233	Self-assembling bacterial pores as components of nanobiosensors for the detection of single peptide molecules. Science in China Series B: Chemistry, 2009, 52, 731-733.	0.8	18
234	Comparative Studies on Electrocatalytic Activities of Chemically Reduced Graphene Oxide and Electrochemically Reduced Graphene Oxide Noncovalently Functionalized with Poly(methylene blue). Electroanalysis, 2010, 22, 2862-2870.	1.5	18

#	Article	IF	CITATIONS
235	â€~Pungent' Copper Surface Resists Acid Corrosion in Strong HCl Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 64-69.	1.8	18
236	An integrated system for optical and electrical detection of single molecules/particles inside a solid-state nanopore. Faraday Discussions, 2015, 184, 85-99.	1.6	18
237	Single Molecule Study of Hydrogen Bond Interactions Between Single Oligonucleotide and Aerolysin Sensing Interface. Frontiers in Chemistry, 2019, 7, 528.	1.8	18
238	Correlated Anodic–Cathodic Nanocollision Events Reveal Redox Behaviors of Single Silver Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 3276-3281.	2.1	18
239	Is the Volume Exclusion Model Practicable for Nanopore Protein Sequencing?. Analytical Chemistry, 2021, 93, 11364-11369.	3.2	18
240	Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode. ACS Sensors, 2021, 6, 335-339.	4.0	18
241	Determination of coenzyme Q10 by in situ EPR spectroelectrochemistry. Electrochemistry Communications, 1999, 1, 194-196.	2.3	17
242	Peering into Biological Nanopore: A Practical Technology to Singleâ€Molecule Analysis. Chemistry - an Asian Journal, 2010, 5, 1952-1961.	1.7	17
243	Reversible photoisomerization of azobenzene molecules on a single gold nanoparticle surface. Chemical Communications, 2016, 52, 2984-2987.	2.2	17
244	Surface components of PM2.5 during clear and hazy days in Shanghai by ToF-SIMS. Atmospheric Environment, 2017, 148, 175-181.	1.9	17
245	Quaternary two dimensional Zn–Ag–In–S nanosheets for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11670-11675.	5.2	17
246	On-surface synthesis of planar dendrimers via divergent cross-coupling reaction. Nature Communications, 2019, 10, 2414.	5.8	17
247	Nanoporeâ€Based Confined Spaces for Singleâ€Molecular Analysis. Chemistry - an Asian Journal, 2019, 14, 389-397.	1.7	17
248	Singleâ€Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO ₂ â€Filmed Ultramicroelectrode. Angewandte Chemie, 2018, 130, 3820-3824.	1.6	16
249	Recent advances in nanocollision electrochemistry. Science China Chemistry, 2019, 62, 1588-1600.	4.2	16
250	Direct Molecular Evidence of Proton Transfer and Mass Dynamics at the Electrode–Electrolyte Interface. Journal of Physical Chemistry Letters, 2019, 10, 251-258.	2.1	16
251	Singleâ€Molecule Frequency Fingerprint for Ion Interaction Networks in a Confined Nanopore. Angewandte Chemie - International Edition, 2021, 60, 24582-24587.	7.2	16
252	L-Cysteine Modified Silver Electrode and Its Application to the Study of the Electrochemistry of Hemoglobin. Analytical Letters, 1996, 29, 1273-1280.	1.0	15

#	Article	IF	CITATIONS
253	Determination of dissolved oxygen based on photoinduced electron transfer from quantum dots to methyl viologen. Analytical Methods, 2010, 2, 1056.	1.3	15
254	Anthraquinonyl glycoside facilitates the standardization of graphene electrodes for the impedance detection of lectins. Chemistry Central Journal, 2014, 8, 67.	2.6	15
255	Reply to Comment on Accurate Data Process for Nanopore Analysis. Analytical Chemistry, 2015, 87, 10653-10656.	3.2	15
256	In-situ discrimination of the water cluster size distribution in aqueous solution by ToF-SIMS. Science China Chemistry, 2018, 61, 159-163.	4.2	15
257	A thumb-size electrochemical system for portable sensors. Analyst, The, 2018, 143, 2760-2764.	1.7	15
258	Toward Precision Measurement and Manipulation of Singleâ€Molecule Reactions by a Confined Space. Small, 2019, 15, e1805426.	5.2	15
259	Spectroscopic and Electrochemical Investigations into the Interactions of Metal Ions with a Ferrocenoyl-Histidine Peptide Conjugate. European Journal of Inorganic Chemistry, 2010, 2010, 5231-5238.	1.0	14
260	New insight into the application of GFP chromophore inspired derivatives: a F ^{â²} fluorescent chemodosimeter. RSC Advances, 2014, 4, 53557-53560.	1.7	14
261	Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy. Chemical Communications, 2017, 53, 5729-5732.	2.2	14
262	Sugarâ€Coated Nanobullet: Growth Inhibition of Cancer Cells Induced by Metformin‣oaded Glyconanoparticles. ChemMedChem, 2017, 12, 1823-1827.	1.6	14
263	Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. Langmuir, 2018, 34, 14940-14945.	1.6	14
264	Monitoring disulfide bonds making and breaking in biological nanopore at single molecule level. Science China Chemistry, 2018, 61, 1385-1388.	4.2	14
265	Highly Sensitive and Selective Electrochemical Detection of Dopamine using Hybrid Bilayer Membranes. ChemElectroChem, 2019, 6, 634-637.	1.7	14
266	Unveiling the Heterogenous Dephosphorylation of DNA Using an Aerolysin Nanopore. ACS Nano, 2020, 14, 12571-12578.	7.3	14
267	An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chemical Science, 2022, 13, 2456-2461.	3.7	14
268	Electrodeposition of ferrocenoyl peptide disulfides. Chemical Communications, 2005, , 1330.	2.2	13
269	Real-time monitoring of the oxidative response of a membrane–channel biomimetic system to free radicals. Chemical Communications, 2013, 49, 6584.	2.2	13
270	A portable microcolumn based on silver nanoparticle functionalized glass fibers and its SERS application. Analyst, The, 2015, 140, 7934-7938.	1.7	13

#	Article	IF	CITATIONS
271	Electrochemistry of single nanoparticles: general discussion. Faraday Discussions, 2016, 193, 387-413.	1.6	13
272	Electrocatalytic Oxidation of Tris(2-carboxyethyl)phosphine at Pyrroloquinoline Quinone Modified Carbon Nanotube through Single Nanoparticle Collision. Analytical Chemistry, 2018, 90, 6059-6063.	3.2	13
273	Plasmon-enhanced photocurrent monitoring of the interaction between porphyrin covalently bonded to graphene oxide and adenosine nucleotides. RSC Advances, 2013, 3, 3503.	1.7	12
274	Individual Modified Carbon Nanotube Collision for Electrocatalytic Oxidation of Hydrazine in Aqueous Solution. ACS Applied Nano Materials, 2018, 1, 2069-2075.	2.4	12
275	Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Transactions, 2019, 48, 3809-3814.	1.6	12
276	Aerolysin Nanopore Identification of Single Nucleotides Using the AdaBoost Model. Journal of Analysis and Testing, 2019, 3, 134-139.	2.5	12
277	Dioctylamineâ€5ulfonamideâ€Modified Carbon Nanoparticles as High Surface Area Substrates for Coenzyme Q10Lipid Electrochemistry. Electroanalysis, 2012, 24, 1003-1010.	1.5	11
278	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1640-1646.	1.7	11
279	A Low Noise Amplifier System for Nanopore-based Single Molecule Analysis. Chinese Journal of Analytical Chemistry, 2015, 43, 971-976.	0.9	11
280	Cosensitized Porphyrin System for High-Performance Solar Cells with TOF-SIMS Analysis. ACS Applied Materials & Interfaces, 2017, 9, 16081-16090.	4.0	11
281	A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. Angewandte Chemie, 2018, 130, 1023-1027.	1.6	11
282	Ion-Specific Effects on Hydrogen Bond Network at a Submicropore Confined Liquid-Vacuum Interface: An <i>in Situ</i> Liquid ToF-SIMS Study. Journal of Physical Chemistry Letters, 2019, 10, 4935-4941.	2.1	11
283	Rapid ultrasensitive monitoring the single-particle surface-enhanced Raman scattering (SERS) using a dark-field microspectroscopy assisted system. Chinese Chemical Letters, 2020, 31, 473-475.	4.8	11
284	Detection of Single Oligonucleotide by an Aerolysin Nanopore. Acta Chimica Sinica, 2016, 74, 734.	0.5	11
285	Determination of traces of hemoglobin by square wave stripping voltammetry at a silver microelectrode. Fresenius' Journal of Analytical Chemistry, 1996, 356, 359-360.	1.5	10
286	6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces. Bioelectrochemistry, 2011, 80, 128-131.	2.4	10
287	Real-time plasmonic monitoring of electrocatalysis on single nanorods. Journal of Electroanalytical Chemistry, 2016, 781, 257-264.	1.9	10
288	Real-time Event Recognition and Analysis System for Nanopore Study. Chinese Journal of Analytical Chemistry, 2018, 46, 843-850.	0.9	10

#	Article	IF	CITATIONS
289	In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochimica Acta, 2021, 188, 201.	2.5	10
290	New insight into photo-induced electron transfer with a simple ubiquinone-based triphenylamine model. RSC Advances, 2015, 5, 57263-57266.	1.7	9
291	Plasmon-Induced Photoreduction System Allows Ultrasensitive Detection of Disease Biomarkers by Silver-Mediated Immunoassay. ACS Sensors, 2020, 5, 2184-2190.	4.0	9
292	Nanopore-based measurement of the interaction of P450cam monooxygenase and putidaredoxin at the single-molecule level. Faraday Discussions, 2021, 233, 295-302.	1.6	9
293	Profiling single-molecule reaction kinetics under nanopore confinement. Chemical Science, 2022, 13, 4109-4114.	3.7	9
294	Thiol-ubiquinone assisted fragmentation of gold nanoparticles. Chemical Communications, 2013, 49, 1738.	2.2	8
295	An integrated software system for analyzing nanopore data. Science Bulletin, 2014, 59, 4942-4945.	1.7	8
296	A polydopamine derivative monolayer on gold electrode for electrochemical catalysis of H2O2. Journal of Electroanalytical Chemistry, 2015, 739, 197-201.	1.9	8
297	A Two‣tage Dissociation System for Multilayer Imaging of Cancer Biomarker‣ynergic Networks in Single Cells. Angewandte Chemie, 2017, 129, 4880-4883.	1.6	8
298	Pore-forming confined space for the innovative electrochemical methods. Current Opinion in Electrochemistry, 2018, 10, 46-53.	2.5	8
299	Nanopore-based sensing interface for single molecule electrochemistry. Science China Chemistry, 2019, 62, 1576-1587.	4.2	8
300	A Course of Hands-On Nanopore Experiments for Undergraduates: Single-Molecule Detection with Portable Electrochemical Instruments. Journal of Chemical Education, 2020, 97, 4345-4354.	1.1	8
301	Measuring temperature effects on nanobubble nucleation <i>via</i> a solid-state nanopore. Analyst, The, 2020, 145, 2510-2514.	1.7	8
302	Stochastic Collision Photoelectrochemistry for Lightâ€Induced Electron Transfer Dynamics. ChemElectroChem, 2021, 8, 3221-3228.	1.7	8
303	Optical-facilitated single-entity electrochemistry. Current Opinion in Electrochemistry, 2022, 34, 100999.	2.5	8
304	An advanced optical–electrochemical nanopore measurement system for single-molecule analysis. Review of Scientific Instruments, 2021, 92, 121301.	0.6	8
305	Nanopore electrochemical measurement for single molecular interactions and beyond. Current Opinion in Electrochemistry, 2022, 35, 101063.	2.5	8
306	Electronic Biosensors Based on DNA Self-Assembled Monolayer on Gold Electrodes. , 2006, , 274-291.		7

#	Article	IF	CITATIONS
307	Single-Nanoparticle Plasmonic Spectroelectrochemistry. ACS Symposium Series, 2016, , 57-96.	0.5	7
308	Investigation of Lipid Metabolism in Dynamic Progression of Coronary Artery Atherosclerosis of Humans by Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2021, 93, 3839-3847.	3.2	7
309	An Envelope Algorithm for Single Nanoparticle Collision Electrochemistry ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1936-1940.	2.6	7
310	Analysis of Single-entity Anisotropy with a Solid-state Nanopore. Acta Chimica Sinica, 2017, 75, 675.	0.5	7
311	Seeing Is Not Believing: Filtering Effects on Random Nature in Electrochemical Measurements of Single-Entity Collision. ACS Measurement Science Au, 2022, 2, 325-331.	1.9	7
312	Photoinduced production of NAD(P)H from an activated fluorescein–DNA monolayer. Chemical Communications, 2004, , 2032-2033.	2.2	6
313	In situ surface-enhanced Raman scattering and X-ray photoelectron spectroscopic investigation of coenzyme Q ₁₀ on silver electrode. Physical Chemistry Chemical Physics, 2011, 13, 2259-2265.	1.3	6
314	pH-Response Mechanism of a Redox Reaction between Silver Ions and Hydroquinone. Journal of Physical Chemistry C, 2016, 120, 23104-23110.	1.5	6
315	Detection of structured singleâ€strand DNA via solidâ€state nanopore. Electrophoresis, 2019, 40, 2112-2116.	1.3	6
316	Instrumentational implementation for parallelized nanopore electrochemical measurements. Analyst, The, 2021, 146, 4111-4120.	1.7	6
317	Full Width at Half Maximum of Nanopore Current Blockage Controlled by a Single-Biomolecule Interface. Langmuir, 2022, 38, 1188-1193.	1.6	6
318	Reliable on-site characterization of aromatic compounds adsorbed on porous particles with SERS in a dynamic adsorption-hydrocyclone separation process. Analytical Methods, 2014, 6, 9348-9353.	1.3	5
319	Exponentially modified Gaussian relevance to the distributions of translocation events in nanopore-based single molecule detection. Chinese Chemical Letters, 2014, 25, 1029-1032.	4.8	5
320	Spectroelectrochemical study of the AMP-Ag ⁺ and ATP-Ag ⁺ complexes using silver mesh electrodes. Analyst, The, 2018, 143, 2342-2348.	1.7	5
321	Reversible redox inter-conversion of biologically active NAD ⁺ /NADH derivatives bound to a gold electrode: ToF-SIMS evidence. Chemical Communications, 2018, 54, 13945-13948.	2.2	5
322	Understanding How Ambiance Affects the Performance of Hole-Conductor-Free Perovskite Solar Cells from a Chemical Perspective. ACS Applied Energy Materials, 2019, 2, 2387-2391.	2.5	5
323	A Closed-Type Wireless Nanopore Electrode for Analyzing Single Nanoparticles. Journal of Visualized Experiments, 2019, , .	0.2	5
324	Pore Confined Liquid–Vacuum Interface for Charge Transfer Study in an Electrochemical Process. Analytical Chemistry, 2019, 91, 3195-3198.	3.2	5

#	Article	IF	CITATIONS
325	Monitoring nanobubble nucleation at earlyâ€stage within a subâ€9Ânm solidâ€state nanopore. Electrophoresis, 2020, 41, 959-965.	1.3	5
326	Nanopore Confinement for Singleâ€Molecule Measurement of Proteins. Small Methods, 2020, 4, 2000695.	4.6	5
327	Singleâ€Molecule Frequency Fingerprint for Ion Interaction Networks in a Confined Nanopore. Angewandte Chemie, 2021, 133, 24787-24792.	1.6	5
328	Study on the Resolution of Single Silver Nanoparticles Electrochemical Behavior at Nanoelectrode. Acta Chimica Sinica, 2017, 75, 671.	0.5	5
329	Bisâ€Coenzyme Q ₀ : Synthesis, Characteristics, and Application. Chemistry - an Asian Journal, 2011, 6, 1064-1073.	1.7	4
330	Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor. Frontiers of Environmental Science and Engineering, 2012, 6, 831-838.	3.3	4
331	A hybrid method combining an electrochemical technique and fluorescence measurement for the highly selective and sensitive detection of Cd ²⁺ . Analytical Methods, 2015, 7, 472-477.	1.3	4
332	A redox-mediated chromogenic reaction and application in immunoassay. Analytica Chimica Acta, 2016, 934, 226-230.	2.6	4
333	Nanopores for Sensing. ACS Sensors, 2018, 3, 2471-2472.	4.0	4
334	Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.	1.6	4
335	pH-Dependent Water Clusters in Photoacid Solution: Real-Time Observation by ToF-SIMS at a Submicropore Confined Liquid-Vacuum Interface. Frontiers in Chemistry, 2020, 8, 731.	1.8	4
336	Electrochemically confined effects on single enzyme detection with nanopipettes. Journal of Electroanalytical Chemistry, 2022, 908, 116086.	1.9	4
337	Thioanisole induced size-selective fragmentation of gold nanoparticles. RSC Advances, 2014, 4, 14031-14034.	1.7	3
338	In situ monitoring of palladacycle-mediated carbonylation by surface-enhanced Raman spectroscopy. RSC Advances, 2015, 5, 97734-97737.	1.7	3
339	Should There Be Minimum Information Reporting Standards for Sensors?. ACS Sensors, 2017, 2, 1377-1379.	4.0	3
340	Development of Biological Nanopore Technique in Non-gene Sequencing Application. Chinese Journal of Analytical Chemistry, 2017, 45, 1766-1775.	0.9	3
341	Biosensing: A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure (Small 18/2018). Small, 2018, 14, 1870080.	5.2	3
342	Processes at nanopores and bio-nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 145-171.	1.6	3

#	Article	IF	CITATIONS
343	Label-Free Detection of Solo Oligonucleotide Lesion Based on Site-Direct Mutagenized Aerolysin Nanopore. Biophysical Journal, 2019, 116, 148a.	0.2	3
344	An ultra-low noise amplifier array system for high throughput single entity analysis. Faraday Discussions, 2021, 233, 33-43.	1.6	3
345	In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy. Scientific Reports, 2015, 5, 18698.	1.6	2
346	Chelation as a strategy to reinforce cationic copper surface protection in acidic solutions. RSC Advances, 2016, 6, 68351-68356.	1.7	2
347	Green method to fabricate porous microspheres for ultrasensitive SERS detection using UV light. RSC Advances, 2016, 6, 100519-100525.	1.7	2
348	Investigation of the Ionization Mechanism of NAD ⁺ /NADH-Modified Gold Electrodes in ToF-SIMS Analysis. Journal of the American Society for Mass Spectrometry, 2018, 29, 1567-1570.	1.2	2
349	Detection of single oligonucleotide with an electrochemical confined solid-state nanopore. Scientia Sinica Chimica, 2017, 47, 1445-1449.	0.2	2
350	Characterization of Steady-State Current at Nanoelectrodes. Acta Chimica Sinica, 2017, 75, 1082.	0.5	2
351	Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection. Acta Chimica Sinica, 2019, 77, 984.	0.5	2
352	Proton-Coupled Electron Transfer of Coenzyme Q in Unbuffered Solution by Pore Confined In Situ Liquid ToF-SIMS. Journal of the Electrochemical Society, 2022, 169, 026525.	1.3	2
353	A two-step calibration method for evaluation high bandwidth electrochemical instrument. Journal of Electroanalytical Chemistry, 2022, 915, 116266.	1.9	2
354	Morphology- and Composition-Modulated Sensing. Springer Briefs in Molecular Science, 2014, , 39-62.	0.1	1
355	Bridge- and Solvent-Mediated Intramolecular Electronic Communications in Ubiquinone-Based Biomolecular Wires. Scientific Reports, 2015, 5, 10352.	1.6	1
356	Sensing on Single Plasmonics. Springer Series in Materials Science, 2016, , 209-235.	0.4	1
357	Processes at nanoelectrodes: general discussion. Faraday Discussions, 2018, 210, 235-265.	1.6	1
358	A Single Biomolecule Interface for Advancing the Sensitivity, Selectivity and Accuracy of Single-Molecule Detection. Biophysical Journal, 2019, 116, 278a.	0.2	1
359	Revealing the Dynamics of Single-Molecule Reactions in a Single-Molecule Nanoreactor. Biophysical Journal, 2019, 116, 33a-34a.	0.2	1
360	Analysis and classification of nanopore data based on feature-level multi-modality. , 2020, , .		1

#	Article	IF	CITATIONS
361	Observing electrochemistry on single plasmonic nanoparticles. Electrochemical Science Advances, 2022, 2, e2100115.	1.2	1
362	Metal-Labeled DNA on Surfaces. , 2004, , 19-44.		0
363	Inside Back Cover: Electrodeposition of Single-Metal Nanoparticles on Stable Proteinâ€1 Membranes: Application of Plasmonic Sensing by Single Nanoparticles (Angew. Chem. Int. Ed. 1/2012). Angewandte Chemie - International Edition, 2012, 51, 277-277.	7.2	0
364	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1587-1587.	1.7	0
365	Editorial note for the special topic on "Nanopore Analysisâ€: Science Bulletin, 2014, 59, 4907-4907.	1.7	0
366	Conclusions and Future Prospects. Springer Briefs in Molecular Science, 2014, , 117-119.	0.1	0
367	Interparticle Coupling-Enhanced Detection. Springer Briefs in Molecular Science, 2014, , 63-82.	0.1	Ο
368	The Preface. Journal of Electroanalytical Chemistry, 2016, 781, 2-14.	1.9	0
369	Preface to the special issue on nanopores in bioanalytical sciences. Mikrochimica Acta, 2016, 183, 923-923.	2.5	Ο
370	Reflecting on How <i>ACS Sensors</i> Can Help Advance the Field of Sensing. ACS Sensors, 2017, 2, 455-456.	4.0	0
371	August 2017: Two Years of Submissions. ACS Sensors, 2017, 2, 1068-1069.	4.0	Ο
372	Selfâ€Assembly: Dynamic Selfâ€Assembly of Homogenous Microcyclic Structures Controlled by a Silverâ€Coated Nanopore (Small 25/2017). Small, 2017, 13, .	5.2	0
373	Energy conversion at nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 333-351.	1.6	Ο
374	Frontispiece: Singleâ€Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions. Chemistry - A European Journal, 2018, 24, .	1.7	0
375	First Impact Factor for ACS Sensors – 5.711. ACS Sensors, 2018, 3, 1218-1219.	4.0	Ο
376	The Effects of Tetramethylammonium Cation on Oligonucleotide Analysis with Aerolysin Nanopore. ChemElectroChem, 2019, 6, 5086-5089.	1.7	0
377	Coupled Time-of-Flight Secondary Ion Mass Spectrometry-Electrochemical Analysis of Electrode-Electrolyte Interface at High Vacuum of 10â^'5 Pa. Chinese Journal of Analytical Chemistry, 2019, 47, 1887-1892.	0.9	0
378	Remembering NJ. ACS Sensors, 2020, 5, 887-888.	4.0	0

#	Article	IF	CITATIONS
379	Titelbild: Singleâ€Molecule Frequency Fingerprint for Ion Interaction Networks in a Confined Nanopore (Angew. Chem. 46/2021). Angewandte Chemie, 2021, 133, 24537-24537.	1.6	Ο
380	Brief Introduction to Localized Surface Plasmon Resonance and Correlative Devices. Springer Briefs in Molecular Science, 2014, , 3-9.	0.1	0
381	Revealing the Dynamics of Single-Molecule Reactions in a Single-Molecule Nanoreactor. ECS Meeting Abstracts, 2019, , .	0.0	Ο
382	Preface. Faraday Discussions, 2022, 233, 9-9.	1.6	0