Nathan Levien Vanier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/761976/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology, 2017, 80, 492-500.	5.2	236
2	Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 2017, 221, 1546-1559.	8.2	194
3	Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches. Carbohydrate Polymers, 2014, 103, 405-413.	10.2	170
4	Effect of single and dual heat–moisture treatments on properties of rice, cassava, and pinhao starches. Carbohydrate Polymers, 2013, 98, 1578-1584.	10.2	147
5	Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chemistry, 2017, 214, 460-467.	8.2	139
6	Physicochemical, crystallinity, pasting and morphological properties of bean starch oxidised by different concentrations of sodium hypochlorite. Food Chemistry, 2012, 131, 1255-1262.	8.2	125
7	Polishing and parboiling effect on the nutritional and technological properties of pigmented rice. Food Chemistry, 2016, 191, 105-112.	8.2	116
8	Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry, 2014, 155, 167-173.	8.2	106
9	Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice. Journal of Food Composition and Analysis, 2013, 30, 73-79.	3.9	103
10	Effects of single and dual physical modifications on pinhão starch. Food Chemistry, 2015, 187, 98-105.	8.2	80
11	Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chemistry, 2019, 287, 197-204.	8.2	68
12	Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months. Food Chemistry, 2018, 242, 427-434.	8.2	67
13	Physicochemical, crystallinity, pasting and thermal properties of heatâ€moistureâ€ŧreated pinhão starch. Starch/Staerke, 2012, 64, 855-863.	2.1	64
14	Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. Journal of Food Composition and Analysis, 2014, 35, 10-17.	3.9	63
15	Starch digestibility and molecular weight distribution of proteins in rice grains subjected to heat-moisture treatment. Food Chemistry, 2017, 219, 260-267.	8.2	62
16	The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chemistry, 2016, 208, 116-123.	8.2	59
17	Physicochemical and pasting properties of maize as affected by storage temperature. Journal of Stored Products Research, 2014, 59, 209-214.	2.6	57
18	Pasting, morphological, thermal and crystallinity properties of starch isolated from beans stored under different atmospheric conditions. Carbohydrate Polymers, 2011, 86, 1403-1409.	10.2	55

NATHAN LEVIEN VANIER

#	Article	IF	CITATIONS
19	Characteristics of starch isolated from maize as a function of grain storage temperature. Carbohydrate Polymers, 2014, 102, 88-94.	10.2	46
20	Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. International Journal of Biological Macromolecules, 2018, 118, 1676-1684.	7.5	41
21	Changes in the Bioactive Compounds Content of Soybean as a Function of Grain Moisture Content and Temperature during Longâ€Term Storage. Journal of Food Science, 2016, 81, H762-8.	3.1	33
22	Impact of cooking temperature on the quality of quick cooking brown rice. Food Chemistry, 2019, 286, 98-105.	8.2	33
23	Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein. Food Chemistry, 2018, 246, 473-480.	8.2	31
24	Influence of drying temperature on the structural and cooking quality properties of black rice. Cereal Chemistry, 2018, 95, 564-574.	2.2	28
25	Molecular structure and granule morphology of native and heatâ€moistureâ€treated pinhão starch. International Journal of Food Science and Technology, 2015, 50, 282-289.	2.7	27
26	Physicochemical, pasting, crystallinity, and morphological properties of starches isolated from maize kernels exhibiting different types of defects. Food Chemistry, 2019, 274, 330-336.	8.2	27
27	Thiamine content and technological quality properties of parboiled rice treated with sodium bisulfite: Benefits and food safety risk. Journal of Food Composition and Analysis, 2015, 41, 98-103.	3.9	24
28	Dual Substitution Strategy in Co-Free Layered Cathode Materials for Superior Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 18733-18742.	8.0	24
29	Hydrothermal treatment of maize: Changes in physical, chemical, and functional properties. Food Chemistry, 2018, 263, 225-231.	8.2	21
30	Extrusion of Rice, Bean and Corn Starches: Extrudate Structure and Molecular Changes in Amylose and Amylopectin. Journal of Food Science, 2016, 81, E2932-E2938.	3.1	20
31	Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics. Food Chemistry, 2019, 288, 297-305.	8.2	20
32	Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Science and Technology, 2016, 36, 23-27.	1.7	17
33	Improvement of the quality of parboiled rice by using anti-browning agents during parboiling process. Food Chemistry, 2017, 235, 51-57.	8.2	17
34	Characteristics of starch from different bean genotypes and its effect on biodegradable films. Journal of the Science of Food and Agriculture, 2019, 99, 1207-1214.	3.5	17
35	Liquid Chromatography with mass spectrometry analysis of mycotoxins in food samples using silica hydride based stationary phases. Journal of Separation Science, 2017, 40, 1953-1959.	2.5	12
36	From brown, red, and black rice to beer: Changes in phenolics, γâ€∎minobutyric acid, and physicochemical attributes. Cereal Chemistry, 2020, 97, 1148-1157.	2.2	11

NATHAN LEVIEN VANIER

#	Article	IF	CITATIONS
37	Effects of using eolic exhausters as a complement to conventional aeration on the quality of rice stored in metal silos. Journal of Stored Products Research, 2014, 59, 76-81.	2.6	10
38	Volatile compounds profile of Brazilian aromatic brown rice genotypes and its cooking quality characteristics. Cereal Chemistry, 2019, 96, 292-301.	2.2	10
39	The addition of defatted rice bran to malted rice improves the quality of rice beer. LWT - Food Science and Technology, 2019, 112, 108262.	5.2	10
40	Isoflavone Aglycone Content and the Thermal, Functional, and Structural Properties of Soy Protein Isolates Prepared from Hydrothermally Treated Soybeans. Journal of Food Science, 2014, 79, E1351-8.	3.1	9
41	Effects of Organic and Conventional Cropping Systems on Technological Properties and Phenolic Compounds of Freshly Harvested and Stored Rice. Journal of Food Science, 2017, 82, 2276-2285.	3.1	9
42	Characteristics of starch isolated from black beans (<i>Phaseolus vulgaris</i> L.) stored for 12 months at different moisture contents and temperatures. Starch/Staerke, 2017, 69, 1600229.	2.1	9
43	Characteristics of Modified Carioca Bean Starch upon Single and Dual Annealing, Heatâ€Moistureâ€Treatment, and Sonication. Starch/Staerke, 2019, 71, 1800173.	2.1	9
44	Rice and common bean blends: Effect of cooking on in vitro starch digestibility and phenolics profile. Food Chemistry, 2021, 340, 127908.	8.2	9
45	Cowpea storage under nitrogenâ€modified atmosphere at different temperatures: Impact on grain structure, cooking quality, in vitro starch digestibility, and phenolic extractability. Journal of Food Processing and Preservation, 2020, 44, e14368.	2.0	8
46	A―and Bâ€ŧype starch granules from wheat exhibiting weak, medium, and strong gluten: An investigation of physicochemical, morphological, and in vitro digestion properties. Cereal Chemistry, 2021, 98, 547-556.	2.2	7
47	Physicochemical and cooking quality characteristics of South American rice cultivars parboiled at different steaming pressures. Cereal Chemistry, 2020, 97, 472-482.	2.2	6
48	Isoflavone profile and protein molecular weight distribution of soy protein concentrates after soaking treatments. Journal of Food Processing and Preservation, 2019, 43, e13906.	2.0	5
49	Discrimination of the quality of Brazilian wheat genotypes and their use as whole-grains in human nutrition. Food Chemistry, 2020, 312, 126074.	8.2	5
50	Quality of gluten-free cookies made with rice flour of different levels of amylose and cowpea beans. British Food Journal, 2021, 123, 1810-1820.	2.9	3
51	Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains. Journal of Agricultural and Food Chemistry, 2017, 65, 6771-6778.	5.2	2
52	Effects of rice amylose content and processing conditions on the quality of rice and bean-based expanded extrudates. Journal of Food Processing and Preservation, 2018, 42, e13758.	2.0	2
53	Microwave Parboiling: Reduction in Process Time, Browning of Rice and Residual Phosphorus Content in the Waste Water. Journal of Food Science, 2019, 84, 2222-2227.	3.1	2
54	Catalytic Efficiency, Structure, and Recycling Behavior of Electrospun Polyvinyl Alcohol-Xylanase Fibers Cross-Linked by Glutaraldehyde. Food Biophysics, 2020, 15, 155-161.	3.0	2

NATHAN LEVIEN VANIER

#	Article	IF	CITATIONS
55	Impact of physicochemical properties on the digestibility of Brazilian whole and polished rice genotypes. Cereal Chemistry, 2021, 98, 1066-1080.	2.2	2
56	Starches in Foods and Beverages. , 2019, , 1-17.		2
57	The convenience of non-conventional methods for evaluation of the culinary quality of beans. Research, Society and Development, 2020, 9, e44491110103.	0.1	2
58	Starches in Foods and Beverages. , 2020, , 897-913.		1
59	Physicochemical and milling properties of rice kernels from upper, middle, and basal spikelets of hybrid and inbred lines at early and ideal harvesting stages. Cereal Chemistry, 2020, 97, 809-817.	2.2	0
60	Effects of Preharvest Desiccation Using Glufosinate-Ammonium on Quality Attributes of Freshly Harvested and Long-Term Stored Soybeans. ACS Agricultural Science and Technology, 2021, 1, 312-321.	2.3	0
61	Effects of genotype and storage on physicochemical and functional properties of soybean protein isolates. Cereal Chemistry, 0, , .	2.2	0