
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619509/publications.pdf Version: 2024-02-01

ΗΕΛΤΗ Ε ΗΟΕΜΑΝΝ

#	Article	IF	CITATIONS
1	Robust State of Health estimation of lithium-ion batteries using convolutional neural network and random forest. Journal of Energy Storage, 2022, 48, 103857.	3.9	81
2	Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios. Energy, 2022, 251, 123774.	4.5	24
3	Internal Short Circuit Detection for Parallel-Connected Battery Cells Using Convolutional Neural Network. Automotive Innovation, 2022, 5, 107.	3.1	4
4	Energy Efficient Platooning of Connected Electrified Vehicles Enabled by a Mixed Hybrid Electric Powertrain Architecture. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 20383-20397.	4.7	1
5	Control Strategy for Battery/Flywheel Hybrid Energy Storage in Electric Shipboard Microgrids. IEEE Transactions on Industrial Informatics, 2021, 17, 1089-1099.	7.2	34
6	A study of cell-to-cell variation of capacity in parallel-connected lithium-ion battery cells. ETransportation, 2021, 7, 100091.	6.8	48
7	Reduced-order models for electro-magnetic-structural coupling phenomena. Mechanical Systems and Signal Processing, 2021, 159, 107752.	4.4	0
8	Combined State and Parameter Estimation of Lithium-Ion Battery With Active Current Injection. IEEE Transactions on Power Electronics, 2020, 35, 4439-4447.	5.4	31
9	The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection. Energy, 2020, 193, 116732.	4.5	44
10	Simultaneous Identification and Control for Hybrid Energy Storage System Using Model Predictive Control and Active Signal Injection. IEEE Transactions on Industrial Electronics, 2020, 67, 9768-9778.	5.2	13
11	Individual Cell Fault Detection for Parallel-Connected Battery Cells Based on the Statistical Model and Analysis. , 2020, , .		4
12	Simultaneous Identification and Control Using Active Signal Injection for Series Hybrid Electric Vehicles Based on Dynamic Programming. IEEE Transactions on Transportation Electrification, 2020, 6, 298-307.	5.3	13
13	Computationally Efficient AC Resistance Model for Stator Winding With Rectangular Conductors. IEEE Transactions on Magnetics, 2020, 56, 1-9.	1.2	13
14	Parameter Identification and Maximum Power Estimation of Battery/Supercapacitor Hybrid Energy Storage System Based on Cramer–Rao Bound Analysis. IEEE Transactions on Power Electronics, 2019, 34, 4831-4843.	5.4	51
15	Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids. Energy Conversion and Management, 2019, 198, 111929.	4.4	52
16	Current Profile Optimization for Combined State of Charge and State of Health Estimation of Lithium Ion Battery Based on Cramer–Rao Bound Analysis. IEEE Transactions on Power Electronics, 2019, 34, 7067-7078.	5.4	52
17	Rotor Resistance Estimation for Induction Machines Using Carrier Signal Injection With Minimized Torque Ripple. IEEE Transactions on Energy Conversion, 2019, 34, 942-951.	3.7	11
18	Component sizing optimization of plug-in hybrid electric vehicles with the hybrid energy storage system. Energy, 2018, 144, 393-403.	4.5	103

#	Article	IF	CITATIONS
19	Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems. Applied Energy, 2018, 212, 919-930.	5.1	97
20	The battery-supercapacitor hybrid energy storage system in electric vehicle applications: A case study. Energy, 2018, 154, 433-441.	4.5	161
21	Adaptive model predictive control with propulsion load estimation and prediction for all-electric ship energy management. Energy, 2018, 150, 877-889.	4.5	66
22	A Dual-Coupled LCC-Compensated IPT System With a Compact Magnetic Coupler. IEEE Transactions on Power Electronics, 2018, 33, 6391-6402.	5.4	112
23	Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Air-Gap Capacitive Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 665-675.	5.4	128
24	A Double-Sided LC-Compensation Circuit for Loosely Coupled Capacitive Power Transfer. IEEE Transactions on Power Electronics, 2018, 33, 1633-1643.	5.4	166
25	Mitigating Power Fluctuations in Electric Ship Propulsion With Hybrid Energy Storage System: Design and Analysis. IEEE Journal of Oceanic Engineering, 2018, 43, 93-107.	2.1	96
26	Simultaneous Identification and Torque Control of Surface-Mount Permanent Magnet Synchronous Machines with Inverter Current and Voltage Constraints. , 2018, , .		0
27	Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems. Applied Energy, 2018, 230, 62-77.	5.1	50
28	Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles. Energy, 2017, 122, 601-612.	4.5	188
29	Simultaneous Identification and Adaptive Torque Control of Permanent Magnet Synchronous Machines. IEEE Transactions on Control Systems Technology, 2017, 25, 1372-1383.	3.2	16
30	Autonomous Wideband Piezoelectric Energy Harvesting Utilizing a Resonant Inverter. IEEE Transactions on Power Electronics, 2017, 32, 6178-6187.	5.4	15
31	Theoretical Comparison of Energy Harvesting Methods for Electret-free Variable-Capacitance Devices. Energy Harvesting and Systems, 2016, 3, 245-262.	1.7	0
32	A Dynamic Charging System With Reduced Output Power Pulsation for Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6580-6590.	5.2	208
33	Offline Identification of Induction Machine Parameters With Core Loss Estimation Using the Stator Current Locus. IEEE Transactions on Energy Conversion, 2016, 31, 1549-1558.	3.7	36
34	A 4-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging Applications. IEEE Transactions on Power Electronics, 2016, , 1-1.	5.4	209
35	An Inductive and Capacitive Combined Wireless Power Transfer System With <italic>LC</italic> -Compensated Topology. IEEE Transactions on Power Electronics, 2016, 31, 8471-8482.	5.4	164
36	Space-Time Field Projection: Finite-Element Analysis Coupled Between Different Meshes and Different Time-Step Settings. IEEE Transactions on Magnetics, 2016, 52, 1-4.	1.2	1

#	Article	IF	CITATIONS
37	Resonant inverter design for stand-alone dynamic active piezoelectric energy harvesting. , 2015, , .		1
38	Steady-State Algorithms for Nonlinear Time-Periodic Magnetic Diffusion Problems Using Diagonally Implicit Runge–Kutta Methods. IEEE Transactions on Magnetics, 2015, 51, 1-12.	1.2	12
39	Output power and efficiency sensitivity to circuit parameter variations in double-sided LCC-compensated wireless power transfer system. , 2015, , .		49
40	Finite-Element-Based Computationally Efficient Scalable Electric Machine Model Suitable for Electrified Powertrain Simulation and Optimization. IEEE Transactions on Industry Applications, 2015, 51, 4435-4445.	3.3	23
41	Computationally Efficient 3-D Finite-Element-Based Dynamic Thermal Models of Electric Machines. IEEE Transactions on Transportation Electrification, 2015, 1, 138-149.	5.3	27
42	The optimization of a hybrid energy storage system at subzero temperatures: Energy management strategy design and battery heating requirement analysis. Applied Energy, 2015, 159, 576-588.	5.1	95
43	A Double-Sided <italic>LCLC</italic> -Compensated Capacitive Power Transfer System for Electric Vehicle Charging. IEEE Transactions on Power Electronics, 2015, 30, 6011-6014.	5.4	345
44	Simultaneous identification and torque regulation of permanent magnet synchronous machines via adaptive excitation decoupling. , 2015, , .		1
45	Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach. Applied Energy, 2015, 139, 151-162.	5.1	321
46	A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles. Journal of Power Sources, 2015, 274, 400-411.	4.0	170
47	A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals. , 2014, , .		5
48	A stator current locus approach to induction machine parameter estimation. , 2014, , .		2
49	Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles. Applied Energy, 2014, 135, 212-224.	5.1	275
50	Energy management strategies comparison for electric vehicles with hybrid energy storage system. Applied Energy, 2014, 134, 321-331.	5.1	305
51	Finite-element-based computationally-efficient electric machine model suitable for use in electrified vehicle powertrain design optimization. , 2014, , .		3
52	Magnetic and thermal scaling of electric machines. International Journal of Vehicle Design, 2013, 61, 219.	0.1	11
53	Steady-state finite element analysis of magnetic devices using a shooting-NewtonGMRES algorithm with Runge-Kutta integration. , 2012, , .		0
54	Harmonic balance FEA of synchronous machines using a traveling-wave airgap model. , 2011, , .		3

4

#	Article	IF	CITATIONS
55	Wideband energy harvesting for piezoelectric devices with linear resonant behavior. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 1294-1301.	1.7	33
56	Active stabilization of DC-DC converters with input LC filters via current-mode control and input voltage feedback. , 2010, , .		9
57	Wideband energy harvesting for resonant piezoelectric devices. , 2010, , .		6
58	Design and testing of a power electronic synthetic inductor. International Journal of Electronics, 2009, 96, 1249-1264.	0.9	5
59	A computationally efficient finite-element/analytical model for simulating electric machines with rotor movement. , 2009, , .		1
60	Power electronic circuitry for energy harvesting backpack. , 2009, , .		8
61	Active Piezoelectric Energy Harvesting: General Principle and Experimental Demonstration. Journal of Intelligent Material Systems and Structures, 2009, 20, 575-585.	1.4	103
62	Modeling and Control of Solid-Rotor Synchronous Reluctance Machines Based on Rotor Flux Dynamics. IEEE Transactions on Magnetics, 2008, 44, 4639-4647.	1.2	9
63	Control of High-Speed Solid-Rotor Synchronous Reluctance Motor/Generator for Flywheel-Based Uninterruptible Power Supplies. IEEE Transactions on Industrial Electronics, 2008, 55, 3038-3046.	5.2	74
64	Analysis and Reduction of Time Harmonic Rotor Loss in Solid-Rotor Synchronous Reluctance Drive. IEEE Transactions on Power Electronics, 2008, 23, 985-992.	5.4	23
65	Energy harvesting using AC machines with high effective pole count. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	3
66	Analysis of Permanent-Magnet Machines Using an Anisotropic Magnetostatic Continuum Formulation. IEEE Transactions on Magnetics, 2007, 43, 516-522.	1.2	3
67	Design and Testing of A Power Electronic Synthetic Inductor. , 2007, , .		1
68	Single crystal PMN-PT/Epoxy 1-3 composite for energy-harvesting application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 631-638.	1.7	105
69	An Investigation of Energy Harvesting Using Electrostrictive Polymers. Materials Research Society Symposia Proceedings, 2005, 889, 1.	0.1	Ο
70	Investigation of electrostrictive polymers for energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 2411-2417.	1.7	104
71	Electrostrictive polymers for mechanical energy harvesting. , 2004, 5385, 17.		16
72	Damping as a result of piezoelectric energy harvesting. Journal of Sound and Vibration, 2004, 269, 991-1001.	2.1	273

#	Article	IF	CITATIONS
73	Energy Harvesting Using a Piezoelectric "Cymbal―Transducer in Dynamic Environment. Japanese Journal of Applied Physics, 2004, 43, 6178-6183.	0.8	308
74	Sensorless control of a thermoacoustic refrigerator. Journal of the Acoustical Society of America, 2004, 116, 288-293.	0.5	4
75	Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 2003, 18, 696-703.	5.4	569
76	Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Transactions on Power Electronics, 2002, 17, 669-676.	5.4	1,064
77	High-speed synchronous reluctance machine with minimized rotor losses. IEEE Transactions on Industry Applications, 2000, 36, 531-539.	3.3	90
78	Speed-sensorless vector torque control of induction machines using a two-time-scale approach. IEEE Transactions on Industry Applications, 1998, 34, 169-177.	3.3	82