Karin Amrein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D and Immune Function. Nutrients, 2013, 5, 2502-2521.	4.1	743
2	Vitamin D deficiency 2.0: an update on the current status worldwide. European Journal of Clinical Nutrition, 2020, 74, 1498-1513.	2.9	705
3	Effect of High-Dose Vitamin D ₃ on Hospital Length of Stay in Critically III Patients With Vitamin D Deficiency. JAMA - Journal of the American Medical Association, 2014, 312, 1520.	7.4	368
4	Women Underrepresented on Editorial Boards of 60 Major Medical Journals. Gender Medicine, 2011, 8, 378-387.	1.4	258
5	Sclerostin and Its Association with Physical Activity, Age, Gender, Body Composition, and Bone Mineral Content in Healthy Adults. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 148-154.	3.6	239
6	Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): An international survey. Journal of Critical Care, 2020, 59, 70-75.	2.2	234
7	ESPEN micronutrient guideline. Clinical Nutrition, 2022, 41, 1357-1424.	5.0	178
8	Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function?. Nutrients, 2020, 12, 1769.	4.1	163
9	Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. Critical Care, 2011, 15, R104.	5.8	146
10	Vitamin D status and its association with season, hospital and sepsis mortality in critical illness. Critical Care, 2014, 18, R47.	5.8	129
11	Evidence for a U-Shaped Relationship Between Prehospital Vitamin D Status and Mortality: A Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 1461-1469.	3.6	95
12	Vitamin D status and mortality in chronic kidney disease. Nephrology Dialysis Transplantation, 2011, 26, 3603-3609.	0.7	87
13	Vitamin therapy in critically ill patients: focus on thiamine, vitamin C, and vitamin D. Intensive Care Medicine, 2018, 44, 1940-1944.	8.2	81
14	Monopolar Radiofrequency Ablation of Thyroid Nodules: A Prospective Austrian Single-Center Study. Thyroid, 2018, 28, 472-480.	4.5	73
15	European expert consensus on practical management of specific aspects of parathyroid disorders in adults and in pregnancy: recommendations of the ESE Educational Program of Parathyroid Disorders (PARAT 2021). European Journal of Endocrinology, 2022, 186, R33-R63.	3.7	73
16	Adverse events and safety issues in blood donation—A comprehensive review. Blood Reviews, 2012, 26, 33-42.	5.7	70
17	Vitamin D and critical illness: what endocrinology can learn from intensive care and vice versa. Endocrine Connections, 2018, 7, R304-R315.	1.9	63
18	Trying to identify who may benefit most from future vitamin D intervention trials: a post hoc analysis from the VITDAL-ICU study excluding the early deaths. Critical Care, 2019, 23, 200.	5.8	62

#	Article	IF	CITATIONS
19	Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respiratory Research, 2015, 2, e000074.	3.0	61
20	Vitamin D deficiency in critically ill children: a systematic review and meta-analysis. Critical Care, 2017, 21, 287.	5.8	58
21	Associations of plasma renin with 10-year cardiovascular mortality, sudden cardiac death, and death due to heart failure. European Heart Journal, 2011, 32, 2642-2649.	2.2	56
22	Vitamin D and the critically ill patient. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 188-193.	2.5	56
23	Functional Status in ICU Survivors and Out of Hospital Outcomes. Critical Care Medicine, 2016, 44, 869-879.	0.9	56
24	Effect of high-dose vitamin D3 on 28-day mortality in adult critically ill patients with severe vitamin D deficiency: a study protocol of a multicentre, placebo-controlled double-blind phase III RCT (the) Tj ETQq0 0 0 rg	BT 10 verlo	ock 10 Tf 50 5
25	Apheresis affects bone and mineral metabolism. Bone, 2010, 46, 789-795.	2.9	42
26	Severe lactic acidosis reversed by thiamine within 24 hours. Critical Care, 2011, 15, 457.	5.8	41
27	Metabolome alterations in severe critical illness and vitamin D status. Critical Care, 2017, 21, 193.	5.8	40
28	Understanding vitaminÂD deficiency in intensive care patients. Intensive Care Medicine, 2015, 41, 1961-1964.	8.2	39
29	Reticulocyte hemoglobin content allows early and reliable detection of functional iron deficiency in blood donors. Clinica Chimica Acta, 2012, 413, 678-682.	1.1	35
30	FGF23 in Acute and Chronic Illness. Disease Markers, 2015, 2015, 1-8.	1.3	35
31	Epidemiology of proximal humeral fractures in Austria between 1989 and 2008. Osteoporosis International, 2013, 24, 2413-2421.	3.1	34
32	Correction of vitamin D deficiency in critically ill patients - VITdAL@ICU study protocol of a double-blind, placebo-controlled randomized clinical trial. BMC Endocrine Disorders, 2012, 12, 27.	2.2	27
33	Efficacy and Safety of Glucose Control with Space GlucoseControl in the Medical Intensive Care Unit—An Open Clinical Investigation. Diabetes Technology and Therapeutics, 2012, 14, 690-695.	4.4	27
34	Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial. BMC Endocrine Disorders, 2012, 12, 19.	2.2	24
35	Interrelated aldosterone and parathyroid hormone mutually modify cardiovascular mortality risk. International Journal of Cardiology, 2015, 184, 710-716.	1.7	24
36	Vitamin D deficiency in critically ill COVID-19 ARDS patients. Clinical Nutrition, 2022, 41, 3089-3095.	5.0	24

#	Article	IF	CITATIONS
37	Hospital Glucose Control: Safe and Reliable Glycemic Control Using Enhanced Model Predictive Control Algorithm in Medical Intensive Care Unit Patients. Diabetes Technology and Therapeutics, 2010, 12, 405-412.	4.4	23
38	Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: The VITA-TRACE survey. Clinical Nutrition, 2021, 40, 590-599.	5.0	23
39	Metabolomic basis for response to high dose vitamin D in critical illness. Clinical Nutrition, 2021, 40, 2053-2060.	5.0	22
40	Epidemiology of distal forearm fractures in Austria between 1989 and 2010. Osteoporosis International, 2014, 25, 2297-2306.	3.1	21
41	Increases in pre-hospitalization serum 25(OH)D concentrations are associated with improved 30-day mortality after hospital admission: A cohort study. Clinical Nutrition, 2016, 35, 514-521.	5.0	21
42	Marinobufagenin in essential hypertension and primary aldosteronism: a cardiotonic steroid with clinical and diagnostic implications. Clinical and Experimental Hypertension, 2015, 37, 108-115.	1.3	20
43	The effect of high-dose cholecalciferol on bioavailable vitamin D levels in critically ill patients: a post hoc analysis of the VITdAL-ICU trial. Intensive Care Medicine, 2017, 43, 1732-1734.	8.2	20
44	Value of monopolar and bipolar radiofrequency ablation for the treatment of benign thyroid nodules. Best Practice and Research in Clinical Endocrinology and Metabolism, 2019, 33, 101283.	4.7	20
45	The relevance of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D concentration for postoperative infections and postoperative organ dysfunctions in cardiac surgery patients: The eVIDenCe study. Clinical Nutrition, 2019, 38, 2756-2762.	5.0	20
46	The Effect of Parenteral or Oral Iron Supplementation on Fatigue, Sleep, Quality of Life and Restless Legs Syndrome in Iron-Deficient Blood Donors: A Secondary Analysis of the IronWoMan RCT. Nutrients, 2020, 12, 1313.	4.1	18
47	Glucose control in intensive care: usability, efficacy and safety of Space GlucoseControl in two medical European intensive care units. BMC Endocrine Disorders, 2014, 14, 62.	2.2	17
48	When not to use meta-analysis: Analysing the meta-analyses on vitamin D in critical care. Clinical Nutrition, 2017, 36, 1729-1730.	5.0	17
49	High-dose intravenous versus oral iron in blood donors with iron deficiency: The IronWoMan randomized, controlled clinical trial. Clinical Nutrition, 2020, 39, 737-745.	5.0	17
50	Vitamin D levels in liver transplantation recipients and early postoperative outcomes: Prospective observational DLiverX study. Clinical Nutrition, 2021, 40, 2355-2363.	5.0	17
51	Gender disparity in critical care publications: a novel Female First Author Index. Annals of Intensive Care, 2021, 11, 103.	4.6	17
52	Simvastatin Efficiently Lowers Small LDL-IgG Immune Complex Levels: A Therapeutic Quality beyond the Lipid-Lowering Effect. PLoS ONE, 2016, 11, e0148210.	2.5	16
53	Vitamin D deficiency in the ICU: a systematic review. Minerva Endocrinologica, 2014, 39, 275-87.	1.8	16
54	Sclerostin in Institutionalized Elderly Women: Associations with Quantitative Bone Ultrasound, Bone Turnover, Fractures, and Mortality. Journal of the American Geriatrics Society, 2014, 62, 1023-1029.	2.6	15

 Celiac Disease and the Thyroid: Highlighting the Roles of Vitamin D and Iron. Nutrients, 2021, 13, 1755. Serum Sclerostin Levels Are Decreased in Adult Patients With Different Types of Osteogenesis Imperfecta. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E311-E319. Ibandronate Increases Sclerostin Levels and Bone Strength in Male Patients with Idiopathic Osteoporosis. Calcified Tissue International, 2015, 96, 477-489. Hypercalcaemia in asymptomatic sarcoidosis unmasked by a vitamin D loading dose. European Respiratory Journal, 2011, 37, 470-471. Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporosis International, 2017, 28, 3347-3354. Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically ill children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion Syndromeäe^C A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. High-dose intravenously administered iron versus orally administered iron in blood donors with iron 	4.1 3.6 3.1 6.7 3.1	15 14 14 13
 Serum Sclerostin Levels Are Decreased in Adult Patients With Different Types of Osteogenesis Imperfecta. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E311-E319. Ibandronate Increases Sclerostin Levels and Bone Strength in Male Patients with Idiopathic Osteoporosis. Calcified Tissue International, 2015, 96, 477-489. Hypercalcaemia in asymptomatic sarcoidosis unmasked by a vitamin D loading dose. European Respiratory Journal, 2011, 37, 470-471. Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VitdAL-ICU study. Osteoporosis International, 2017, 28, 3347-3354. Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically III children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion SyndromeãC'A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. 	3.6 3.1 6.7 3.1	14 14 13
 ⁵⁷ Ibandronate Increases Sclerostin Levels and Bone Strength in Male Patients with Idiopathic Osteoporosis. Calcified Tissue International, 2015, 96, 477-489. ⁵⁸ Hypercalcaemia in asymptomatic sarcoidosis unmasked by a vitamin D loading dose. European Respiratory Journal, 2011, 37, 470-471. ⁵⁹ Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporosis International, 2017, 28, 3347-3354. ⁶⁰ Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically III children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. ⁶¹ Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. ⁶² Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. ⁶³ Propofol Infusion Syndromeä€" A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. ⁶⁴ Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. ⁶⁵ High-dose Intravenously administered iron versus orally administered iron in blood donors with iron 	3.1 6.7 3.1	14 13
 Hypercalcaemia in asymptomatic sarcoidosis unmasked by a vitamin D loading dose. European Respiratory Journal, 2011, 37, 470-471. Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporosis International, 2017, 28, 3347-3354. Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically III children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion Syndromeâ€"A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. 	6.7 3.1	13
 Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporosis International, 2017, 28, 3347-3354. Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically ill children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion Syndromeâ€"A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. 	3.1	
 Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically ill children with vitamin D deficiency (VITdAL-PICU study). Pilot and Feasibility Studies, 2017, 3, 70. Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion SyndromeâC"A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. 		12
 G1 Understanding adrenal crisis. Intensive Care Medicine, 2018, 44, 652-655. G2 Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. G3 Propofol Infusion Syndromeâ€"A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. G4 Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. High-dose intravenously administered iron versus orally administered iron in blood donors with iron 	1.2	12
 Bone metabolism and fracture risk during and after critical illness. Current Opinion in Critical Care, 2020, 26, 379-385. Propofol Infusion Syndrome—A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. High-dose intravenously administered iron versus orally administered iron in blood donors with iron 	8.2	12
 Propofol Infusion Syndrome—A Critical Incident Report Highlighting the Danger of Reexposure. Journal of Neurosurgical Anesthesiology, 2011, 23, 265-266. Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. High-dose intravenously administered iron versus orally administered iron in blood donors with iron 	3.2	12
 ⁶⁴ Ibandronate and Calcitriol Reduces Fracture Risk, Reverses Bone Loss, and Normalizes Bone Turnover After ITX. Transplantation, 2012, 93, 331-336. ⁶⁵ High-dose intravenously administered iron versus orally administered iron in blood donors with iron 	1.2	11
High-dose intravenously administered iron versus orally administered iron in blood donors with iron	1.0	11
⁶⁵ deficiency: study protocol for a randomised, controlled trial. Trials, 2016, 17, 527.	1.6	11
Psychological symptoms in relatives of critically ill patients (ICU families): a prospective multicenter study. Intensive Care Medicine, 2020, 46, 1060-1062.	8.2	11
Low bone turnover and increase of bone mineral density in a premenopausal woman with postoperative hypoparathyroidism and thyroxine suppressive therapy. Osteoporosis International, 2011, 22, 2903-2905.	3.1	10
 Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial. PLoS ONE, 2017, 12, e0173799. 	2.5	10
⁶⁹ Prioritizing information topics for relatives of critically ill patients. Wiener Klinische Wochenschrift, 2018, 130, 645-652.	1.9	10
70 Micronutrients in Sepsis and COVID-19: A Narrative Review on What We Have Learned and What We Want to Know in Future Trials. Medicina (Lithuania), 2021, 57, 419.	2.0	10
Procalcitonin metabolomics in the critically ill reveal relationships between inflammation intensity and energy utilization pathways. Scientific Reports, 2021, 11, 23194.	3.3	10
Vitamin D, parathyroid hormone and serum calcium levels and their association with hospital mortality in critically ill patients. Critical Care, 2010, 14, P589.	5.8	8

#	Article	IF	CITATIONS
73	Relationship between Plasma Aldosterone Concentration and Soluble Cellular Adhesion Molecules in Patients Referred to Coronary Angiography. Experimental and Clinical Endocrinology and Diabetes, 2011, 119, 649-655.	1.2	8
74	Homoarginine in Patients With Primary Hyperparathyroidism. American Journal of the Medical Sciences, 2015, 349, 306-311.	1.1	8
75	Teriparatide treatment in a heart transplant patient with a chronic kidney disease and a low-turnover bone disease: a case report. Osteoporosis International, 2017, 28, 1149-1152.	3.1	8
76	Effect of eplerenone on markers of bone turnover in patients with primary hyperparathyroidism – The randomized, placebo-controlled EPATH trial. Bone, 2017, 105, 212-217.	2.9	8
77	Women at medical conferences 2016 – still hitting their head at the glass ceiling. Wiener Klinische Wochenschrift, 2017, 129, 287-288.	1.9	8
78	Metabolomic differences between critically III women and men. Scientific Reports, 2021, 11, 3951.	3.3	8
79	Sex-Specific Catabolic Metabolism Alterations in the Critically III following High Dose Vitamin D. Metabolites, 2022, 12, 207.	2.9	8
80	Clarification needed for the systematic review of vitamin D trials in the ICU. Intensive Care Medicine, 2017, 43, 595-596.	8.2	7
81	Vitamin D in critical care: where are we now and what is next?. Current Opinion in Critical Care, 2021, 27, 378-384.	3.2	7
82	Neither vitamin D levels nor supplementation are associated with the development of persistent critical illness: a retrospective cohort analysis. Critical Care and Resuscitation: Journal of the Australasian Academy of Critical Care Medicine, 2019, 21, 39-44.	0.1	7
83	Circulating aldosterone and mortality in female nursing home residents. Experimental Gerontology, 2013, 48, 313-318.	2.8	6
84	VitaminÂD assessment in perioperative medicine and critical care. Wiener Klinische Wochenschrift, 2021, 133, 79-85.	1.9	6
85	Vitamin D Intervention Trials in Critical Illness. Inflammation and Allergy: Drug Targets, 2013, 12, 282-287.	1.8	6
86	Nutrition during extracorporeal life support: A review of pathophysiological bases and application of guidelines. Artificial Organs, 2022, 46, 1240-1248.	1.9	6
87	Vitamin D Deficiency in Pediatric Critical Care. Journal of Pediatric Intensive Care, 2016, 05, 142-153.	0.8	5
88	Transfusion-associated graft-versus-host disease presenting as severe high-volume diarrhoea in a patient with Goodpasture's syndrome. Intensive Care Medicine, 2010, 36, 1271-1272.	8.2	4
89	Pneumatosis coli – an underrecognized lesion mimicking neoplastic disease. Wiener Klinische Wochenschrift, 2011, 123, 515-518.	1.9	4
90	Native and Active Vitamin D in Intensive Care: Who and How We Treat Is Crucially Important. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1193-1194.	5.6	4

#	Article	IF	CITATIONS
91	Bone - a casualty of ICU survival?. Critical Care, 2015, 19, 253.	5.8	4
92	Usefulness of the trabecular bone score in maintenance dialysis patients. Wiener Klinische Wochenschrift, 2022, 134, 442-448.	1.9	4
93	A Challenging Case of Hypocalcemia Supporting the Concept That 25-Hydroxyvitamin D Status Is Important for Intestinal Calcium Absorption. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1842-1846.	3.6	3
94	Highâ€dose cholecalciferol in critically ill patients with liver cirrhosis. Journal of Internal Medicine, 2016, 279, 309-310.	6.0	3
95	Occult Pneumothorax on Chest X-ray. American Journal of Emergency Medicine, 2011, 29, 959.e3-959.e4.	1.6	2
96	Serum sclerostin levels in renal cell carcinoma patients with bone metastases. Scientific Reports, 2016, 6, 33551.	3.3	2
97	High-dose monthly vitamin D3can help to prevent acute respiratory infections in older long-term care residents, but may increase risk of falls. Evidence-based Nursing, 2017, 20, 120-121.	0.2	2
98	Iron deficiency in blood donors: perceptions and management among general practitioners and internists. Transfusion, 2017, 57, 2548-2549.	1.6	2
99	Metabolic and Endocrine Challenges. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 078-097.	2.1	2
100	FUNCTIONAL STATUS IN ICU SURVIVORS AND OUT OF HOSPITAL OUTCOMES. Intensive Care Medicine Experimental, 2015, 3, A178.	1.9	1
101	Morphometric parameters of muscle and bone in critically ill patients. Wiener Klinische Wochenschrift, 2021, 133, 529-535.	1.9	1
102	Vitamin D status in critical care: Contributor or marker of poor health?. Lung India, 2014, 31, 299-300.	0.7	1
103	Recurrent ventricular fibrillation caused by left circumflex artery occlusion without ST-elevation on 12-lead ECG. Resuscitation, 2011, 82, 496-497.	3.0	Ο
104	Neither Vitamin D Levels Nor Supplementation Are Associated with Persistent Critical Illness: A Retrospective Cohort Analysis. , 2019, , .		0
105	SAT-LB71 Is Late Diagnosis of Postsurgical Hypoparathyroidism the Rule, Not the Exception?. Journal of the Endocrine Society, 2020, 4, .	0.2	Ο
106	A potpourri of nutrition and metabolism in the ICU. Current Opinion in Critical Care, 2020, Publish Ahead of Print, 327-328.	3.2	0
107	Procalcitonin Metabolomics in the Critically III: A Post-Hoc Metabolomics Cohort Study of the VITdAL-ICU Trial. , 2021, , .		0
108	Gasteditorial. Austrian Journal of Clinical Endocrinology and Metabolism, 2021, 14, 47-47.	0.0	0

#	Article	IF	CITATIONS
109	Specific Considerations Relevant to Critical Illness. , 2014, , 1-20.		0
110	Specific Considerations Relevant to Critical Illness. , 2015, , 899-916.		0
111	Letter to the Editor: Preadmission Bisphosphonate and Mortality in Critically Ill Patients. Journal of Clinical Endocrinology and Metabolism, 2016, 101, L60-L61.	3.6	0