
Juan J Garrido-Pavon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/761937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD9 expression in porcine blood CD4+ T cells delineates two subsets with phenotypic characteristics of central and effector memory cells. Developmental and Comparative Immunology, 2022, 133, 104431.	1.0	1
2	Study of microRNA expression in Salmonella Typhimurium-infected porcine ileum reveals miR-194a-5p as an important regulator of the TLR4-mediated inflammatory response. Veterinary Research, 2022, 53, .	1.1	3
3	Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Research in Veterinary Science, 2021, 135, 85-95.	0.9	24
4	Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells. Nature Communications, 2021, 12, 3392.	5.8	5
5	Pathogen Challenge and Dietary Shift Alter Microbiota Composition and Activity in a Mucin-Associated in vitro Model of the Piglet Colon (MPigut-IVM) Simulating Weaning Transition. Frontiers in Microbiology, 2021, 12, 703421.	1.5	8
6	SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Frontiers in Immunology, 2021, 12, 708264.	2.2	204
7	Saccharomyces Cerevisiae Var Boulardii CNCM I–1079 Reduces Expression of Genes Involved in Inflammatory Response in Porcine Cells Challenged by Enterotoxigenic E. Coli and Influences Bacterial Communities in an In Vitro Model of the Weaning Piglet Colon. Antibiotics, 2021, 10, 1101.	1.5	0
8	Time-series transcriptomic analysis of bronchoalveolar lavage cells from virulent and low virulent PRRSV-1-infected piglets. Journal of Virology, 2021, , JVI0114021.	1.5	6
9	Functional screenings reveal different requirements for host microRNAs in Salmonella and Shigella infection. Nature Microbiology, 2020, 5, 192-205.	5.9	25
10	<i>Salmonella Typhimurium</i> Infection Along the Porcine Gastrointestinal Tract and Associated Lymphoid Tissues. Veterinary Pathology, 2019, 56, 681-690.	0.8	14
11	Identification and functional characterization of polymorphisms in promoter sequences of porcine NOD1 and NOD2 genes. Research in Veterinary Science, 2019, 124, 310-316.	0.9	1
12	Comprehensive analysis of pig feces metabolome by chromatographic techniques coupled to mass spectrometry in high resolution mode: Influence of sample preparation on the identification coverage. Talanta, 2019, 199, 303-309.	2.9	7
13	CE method for analyzing <i>Salmonella typhimurium</i> in water samples. Journal of Separation Science, 2018, 41, 534-539.	1.3	2
14	Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Developmental and Comparative Immunology, 2018, 81, 95-104.	1.0	6
15	Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Veterinary Research, 2018, 49, 90.	1.1	14
16	Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa. Scientific Reports, 2018, 8, 7788.	1.6	61
17	Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection. Veterinary Research, 2018, 49, 9.	1.1	15
18	Comparative Proteomics Reveals Differences in Host-Pathogen Interaction between Infectious and Commensal Relationship with Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2017, 7, 145.	1.8	11

#	Article	IF	CITATIONS
19	Molecular analysis of lungs from pigs immunized with a mutant transferrin binding protein B-based vaccine and challenged with Haemophilus parasuis. Comparative Immunology, Microbiology and Infectious Diseases, 2016, 48, 69-78.	0.7	7
20	Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum. Veterinary Research, 2016, 47, 11.	1.1	29
21	Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Veterinary Research, 2015, 46, 135.	1.1	74
22	Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium. Frontiers in Cellular and Infection Microbiology, 2015, 5, 64.	1.8	21
23	Identification and Functional Characterization of Novel Genetic Variations in Porcine <i>TLR5</i> Promoter. DNA and Cell Biology, 2014, 33, 469-476.	0.9	6
24	Interaction between Campylobacter and intestinal epithelial cells leads to a different proinflammatory response in human and porcine host. Veterinary Immunology and Immunopathology, 2014, 162, 14-23.	0.5	12
25	Porcine sst1 can physically interact with other somatostatin receptors, and its expression is regulated by metabolic/inflammatory sensors. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E483-E493.	1.8	1
26	Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comparative Immunology, Microbiology and Infectious Diseases, 2014, 37, 59-67.	0.7	20
27	Proteomic Approaches to Study the Pig Intestinal System. Current Protein and Peptide Science, 2014, 15, 89-99.	0.7	6
28	Pyroptosis and adaptive immunity mechanisms are promptly engendered in mesenteric lymph-nodes during pig infections with Salmonella enterica serovar Typhimurium. Veterinary Research, 2013, 44, 120.	1.1	15
29	Exploring the immune response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium: an analysis of transcriptional changes, morphological alterations and pathogen burden. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 149-160.	0.7	20
30	Innate and adaptive immune mechanisms are effectively induced in ileal Peyer's patches of Salmonella typhimurium infected pigs. Developmental and Comparative Immunology, 2013, 41, 100-104.	1.0	10
31	Identification of amino acid residues of OspA of Borrelia involved in binding to CD40 receptor. , 2013, , 107-111.		0
32	Molecular cloning, characterization and gene expression of the full length cDNA encoding the porcine CD11b(l±M) and chromosomal localization of the porcine CD11a(l±L)–CD11b(l±M)–CD11b(ĺ±D) gen cluster. Veterinary Immunology and Immunopathology, 2012, 145, 505-510.	e0.5	2
33	An in vivo proteomic study of the interaction between Salmonella Typhimurium and porcine ileum mucosa. Journal of Proteomics, 2012, 75, 2015-2026.	1.2	31
34	Proteomic analysis of porcine mesenteric lymph-nodes after Salmonella typhimurium infection. Journal of Proteomics, 2012, 75, 4457-4470.	1.2	19
35	Two cDNAs coding for the porcine CD51 ($\hat{l}\pm\nu$) integrin subunit: Cloning, expression analysis, adhesion assays and chromosomal localization. Gene, 2011, 481, 29-40.	1.0	6
36	Immunohistochemical distribution of the tetraspanin CD9 in normal porcine tissues. Molecular Biology Reports, 2011, 38, 1021-1028.	1.0	7

Juan J Garrido-Pavon

#	Article	IF	CITATIONS
37	Gene expression pattern in swine neutrophils after lipopolysaccharide exposure: a time course comparison. BMC Proceedings, 2011, 5, S11.	1.8	3
38	Quantitative proteomics by 2â€DE, ¹⁶ O/ ¹⁸ O labelling and linear ion trap mass spectrometry analysis of lymph nodes from piglets inoculated by porcine circovirus type 2. Proteomics, 2011, 11, 3452-3469.	1.3	22
39	Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, 161-174.	0.7	98
40	Quantitative analysis of the immune response upon <i>Salmonella typhimurium</i> infection along the porcine intestinal gut. Veterinary Research, 2010, 41, 23.	1.1	87
41	Methods for interpreting lists of affected genes obtained in a DNA microarray experiment. BMC Proceedings, 2009, 3, S5.	1.8	29
42	Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proceedings, 2009, 3, S6.	1.8	135
43	Three new polymorphic equine microsatellites: HLM2, HLM3, HLM5. Animal Genetics, 2009, 27, 215-215.	0.6	3
44	Molecular cloning, expression analysis and chromosome localization of the Tpt1 gene coding for the pig translationally controlled tumor protein (TCTP). Molecular Biology Reports, 2009, 36, 1957-1965.	1.0	7
45	Proteomic analysis of the porcine platelet proteome and alterations induced by thrombin activation. Journal of Proteomics, 2008, 71, 547-560.	1.2	14
46	Molecular characterization and expression analysis of the gene coding for the porcine β3 integrin subunit (CD61). Gene, 2008, 408, 9-17.	1.0	11
47	Molecular cloning characterization and expression of porcine immunoreceptor SIRPα. Developmental and Comparative Immunology, 2007, 31, 307-318.	1.0	10
48	Molecular cloning, chromosomal location, and expression analysis of porcine CD14. Developmental and Comparative Immunology, 2007, 31, 738-747.	1.0	12
49	Towards a global analysis of porcine alveolar macrophages proteins through two-dimensional electrophoresis and mass spectrometry. Developmental and Comparative Immunology, 2007, 31, 1220-1232.	1.0	11
50	Analysis of porcine peripheral blood mononuclear cells proteome by 2-DE and MS: Analytical and biological variability in the protein expression level and protein identification. Proteomics, 2006, 6, S215-S225.	1.3	22
51	Localization of porcine CD29 transcripts and protein in pig cells and tissues by RT-PCR and immunohistochemistry. Veterinary Immunology and Immunopathology, 2005, 104, 281-288.	0.5	6
52	Analysis of Swine β1Integrin (CD29) Epitopes Through Monoclonal Antibodies Developed Using Two Immunization Strategies. Hybridoma, 2004, 23, 271-278.	0.6	2
53	Molecular cloning and structural analysis of the porcine homologue to CD97 antigen. Veterinary Immunology and Immunopathology, 2003, 93, 107-115.	0.5	4
54	Molecular cloning, expression pattern and chromosomal mapping of pig CD9 antigen. Cytogenetic and Genome Research, 2003, 101, 143-146.	0.6	7

Juan J Garrido-Pavon

#	Article	IF	CITATIONS
55	Assignment of porcine CD97 gene to the 1/2q21→q22 region of the pig chromosome 2 with somatic cell hybrids. Cytogenetic and Genome Research, 2003, 103, 203H-203H.	0.6	0
56	Assignment of the CD47 gene to pig chromosome band 13q42→1/2q46 with somatic cell hybrids. Cytogenetic and Genome Research, 2002, 97, 276E-276E.	0.6	0
57	12 Role of CD-61 (Beta-3 Integrin) glycoprotein in colon carcinoma. Handbook of Immunohistochemistry and in Situ Hybridization of Human Carcinomas, 2002, , 227-235.	0.0	0
58	A polymorphic microsatellite located on pig chromosome band 12p11-2/3p13, within the 3′-UTR of the ITGB3 gene. Animal Genetics, 2002, 33, 239-240.	0.6	2
59	Expression of CD61 (\hat{l}^2 3integrin subunit) on canine cells. Platelets, 2001, 12, 69-73.	1.1	5
60	MOLECULAR CLONING AND CHARACTERIZATION OF THE PIG HOMOLOGUE TO HUMAN CD29, THE INTEGRIN ??1 SUBUNIT1. Transplantation, 2000, 70, 649-655.	0.5	17
61	A new epitope on sheep CD45R molecule detected by a monoclonal antibody. Comparative Immunology, Microbiology and Infectious Diseases, 1999, 22, 125-136.	0.7	4
62	Assignment <footref rid="foot01">¹</footref> of the CD59 gene to pig chromosome band 2p17→p14 with somatic cell hybrids. Cytogenetic and Genome Research, 1998, 83, 86-87.	0.6	5
63	Platelet activation studies with CD41/61 monoclonal antibodies. Veterinary Immunology and Immunopathology, 1996, 52, 357-362.	0.5	17
64	Localization of the tenascin-C gene to pig Chromosome 1. Mammalian Genome, 1995, 6, 221-221.	1.0	4
65	Tolerance to 1-pentene-3-ol and to 1-pentene-3-one in relation to alcohol dehydrogenase (ADH) and aldo keto reductase (AKR) activities inDrosophila melanogaster. Biochemical Genetics, 1990, 28, 513-522.	0.8	4
66	Participation of Drosophila melanogaster alcohol dehydrogenase (ADH) in the detoxification of 1-pentene-3-ol and 1-pentene-3-one. Heredity, 1988, 61, 85-91.	1.2	5
67	Intergenotypic effect of isopropanol ingestion in the further detoxification of ethanol and isopropanol in Drosophila melanogaster. Heredity, 1987, 59, 405-411.	1.2	9