Karen G Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7619220/publications.pdf

Version: 2024-02-01

64 papers

5,343 citations

30 h-index 59 g-index

73 all docs

73 docs citations

73 times ranked 5264 citing authors

#	Article	IF	CITATIONS
1	Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3846-3851.	3.3	654
2	Predominant archaea in marine sediments degrade detrital proteins. Nature, 2013, 496, 215-218.	13.7	526
3	Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiology Reviews, 2015, 39, 688-728.	3.9	288
4	Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME Journal, 2012, 6, 1949-1965.	4.4	281
5	Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. MSystems, 2018, 3, .	1.7	273
6	High proportions of bacteria and archaea across most biomes remain uncultured. ISME Journal, 2019, 13, 3126-3130.	4.4	264
7	Diversity, ecology and evolution of Archaea. Nature Microbiology, 2020, 5, 887-900.	5.9	262
8	The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 2016, 31, 217-226.	2.3	241
9	An Anaerobic Methane-Oxidizing Community of ANME-1b Archaea in Hypersaline Gulf of Mexico Sediments. Applied and Environmental Microbiology, 2006, 72, 7218-7230.	1.4	206
10	Genome sequencing of a single cell of the widely distributed marine subsurface <i>Dehalococcoidia,</i> phylum <i>Chloroflexi</i> ISME Journal, 2014, 8, 383-397.	4.4	172
11	Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase A () Tj ETQq1 1 Microbiology, 2005, 71, 4592-4601.	l 0.784314 1.4	4 rgBT /Over 152
12	Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME Journal, 2012, 6, 1018-1031.	4.4	149
13	Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environmental Microbiology, 2011, 13, 2548-2564.	1.8	146
14	Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep. PLoS ONE, 2010, 5, e8738.	1.1	117
15	Roadmap for naming uncultivated Archaea and Bacteria. Nature Microbiology, 2020, 5, 987-994.	5.9	115
16	Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor. Applied and Environmental Microbiology, 2013, 79, 7790-7799.	1.4	113
17	Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience, 2009, 2, 349-354.	5.4	111
18	Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME Journal, 2019, 13, 885-901.	4.4	92

#	Article	IF	Citations
19	The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation. Frontiers in Microbiology, 2016, 7, 75.	1.5	82
20	Single-Cell Genome and Group-Specific <i>dsrAB</i> Sequencing Implicate Marine Members of the Class <i>Dehalococcoidia</i> (Phylum <i>Chloroflexi</i>) in Sulfur Cycling. MBio, 2016, 7, .	1.8	78
21	Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 67, 21-31.	0.6	73
22	Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin. Frontiers in Microbiology, 2016, 7, 17.	1.5	72
23	Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. FEMS Microbiology Ecology, 2010, 72, 143-151.	1.3	62
24	Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments. Applied and Environmental Microbiology, 2019, 85, .	1.4	58
25	Sulfide Ameliorates Metal Toxicity for Deep-Sea Hydrothermal Vent Archaea. Applied and Environmental Microbiology, 2004, 70, 2551-2555.	1.4	56
26	Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME Journal, 2021, 15, 3159-3180.	4.4	54
27	Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year Subsistence in Baltic Sea Sediments. MBio, 2019, 10, .	1.8	45
28	Thriving or surviving? Evaluating active microbial guilds in Baltic Sea sediment. Environmental Microbiology Reports, 2017, 9, 528-536.	1.0	39
29	Microbial Taxonomy Run Amok. Trends in Microbiology, 2021, 29, 394-404.	3.5	38
30	Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and <i>In Situ</i> Conditions and <i>In Situ</i>	1.4	37
31	Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nature Geoscience, 2021, 14, 301-306.	5.4	32
32	Estimating Population Turnover Rates by Relative Quantification Methods Reveals Microbial Dynamics in Marine Sediment. Applied and Environmental Microbiology, 2018, 84, .	1.4	31
33	<scp>ANME</scp> â€1 archaea may drive methane accumulation and removal in estuarine sediments. Environmental Microbiology Reports, 2021, 13, 185-194.	1.0	31
34	Effects of Dissolved Sulfide, pH, and Temperature on Growth and Survival of Marine Hyperthermophilic Archaea. Applied and Environmental Microbiology, 2005, 71, 6383-6387.	1.4	29
35	Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Frontiers in Microbiology, 2013, 4, 207.	1.5	28
36	Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales. Frontiers in Microbiology, 2016, 7, 1221.	1.5	25

#	Article	IF	Citations
37	Predominance of Anaerobic, Spore-Forming Bacteria in Metabolically Active Microbial Communities from Ancient Siberian Permafrost. Applied and Environmental Microbiology, 2019, 85, .	1.4	25
38	Development and application of primers for the class <scp><i>D</i></scp> <i>ehalococcoidiahloroflexi</i>) enables deep insights into diversity and stratification of subgroups in the marine subsurface. Environmental Microbiology, 2015, 17, 3540-3556.	1.8	22
39	New aminopeptidase from "microbial dark matter―archaeon. FASEB Journal, 2015, 29, 4071-4079.	0.2	22
40	Methanogens in the Antarctic Dry Valley permafrost. FEMS Microbiology Ecology, 2018, 94, .	1.3	22
41	Inter-laboratory quantification of Bacteria and Archaea in deeply buried sediments of the Baltic Sea (IODP Expedition 347). FEMS Microbiology Ecology, 2017, 93, fix007.	1.3	18
42	Survival and growth of two heterotrophic hydrothermal vent archaea, Pyrococcus strain GB-D and Thermococcus fumicolans, under low pH and high sulfide concentrations in combination with high temperature and pressure regimes. Extremophiles, 2007, 11, 329-342.	0.9	17
43	Beyond known methanogens. Science, 2015, 350, 384-384.	6.0	17
44	Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Scientific Data, 2019, 6, 284.	2.4	17
45	Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost. Microbiome, 2021, 9, 110.	4.9	17
46	Microbial community structure and methane-cycling activity of subsurface sediments at Mississippi Canyon 118 before the Deepwater Horizon disaster. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 148-156.	0.6	15
47	Time as a microbial resource. Environmental Microbiology Reports, 2021, 13, 18-21.	1.0	14
48	Eight Metagenome-Assembled Genomes Provide Evidence for Microbial Adaptation in 20,000- to 1,000,000-Year-Old Siberian Permafrost. Applied and Environmental Microbiology, 2021, 87, e0097221.	1.4	13
49	Science depends on nomenclature, but nomenclature is not science. Nature Reviews Microbiology, 2022, 20, 123-124.	13.6	13
50	High $\langle \sup 3 \langle \sup He \langle \sup 4 \langle \sup He $ in central Panama reveals a distal connection to the GalÃ _i pagos plume. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
51	Potential Activities and Long Lifetimes of Organic Carbon-Degrading Extracellular Enzymes in Deep Subsurface Sediments of the Baltic Sea. Frontiers in Microbiology, 2021, 12, 702015.	1.5	10
52	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. PLoS ONE, 2020, 15, e0234839.	1.1	8
53	Permafrost Active Layer Microbes From Ny Ãlesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes. Frontiers in Microbiology, 2021, 12, 757812.	1.5	7
54	Evidence for a Growth Zone for Deep-Subsurface Microbial Clades in Near-Surface Anoxic Sediments. Applied and Environmental Microbiology, 2020, 86, .	1.4	5

#	Article	IF	CITATIONS
55	Cryptic Methane-Cycling by Methanogens During Multi-Year Incubation of Estuarine Sediment. Frontiers in Microbiology, 2022, 13, 847563.	1.5	3
56	6. Quantifying microbes in the marine subseafloor: some notes of caution. , 0, , .		2
57	Draft Genome Sequence of Antarctic Methanogen Enriched from Dry Valley Permafrost. Genome Announcements, $2016, 4, .$	0.8	2
58	The Genetics, Biochemistry, and Biophysics of Carbon Cycling by Deep Life., 2019, , 556-584.		1
59	On the Past, Present, and Future Role of Biology in NASA's Exploration of our Solar System. , 2021, 53, .		0
60	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment. , 2020, 15 , e0234839.		0
61	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment., 2020, 15, e0234839.		O
62	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment., 2020, 15, e0234839.		0
63	Woeseiales transcriptional response to shallow burial in Arctic fjord surface sediment., 2020, 15, e0234839.		0
64	Draft Genome Sequences of 10 Pseudomonas sp. Isolates from the Active Layer of Permafrost in Ny Ãlesund, Svalbard, Norway. Microbiology Resource Announcements, 2022, , e0020122.	0.3	0