
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploration of alcoholâ€enhanced Cuâ€mediated radiofluorination toward practical labeling. Journal of Labelled Compounds and Radiopharmaceuticals, 2022, 65, 13-20.	0.5	3
2	Estradiol promotes cell survival and induces <scp><i>Greb1</i></scp> expression in granulosa cell tumors of the ovary through an <scp>ERα</scp> â€dependent mechanism. Journal of Pathology, 2022, 256, 335-348.	2.1	9
3	FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene, 2022, 41, 3899-3911.	2.6	16
4	The quest for improving the management of breast cancer by functional imaging: The discovery and development of 16α-[18F]fluoroestradiol (FES), a PET radiotracer for the estrogen receptor, a historical review. Nuclear Medicine and Biology, 2021, 92, 24-37.	0.3	38
5	Contrasting activities of estrogen receptor beta isoforms in triple negative breast cancer. Breast Cancer Research and Treatment, 2021, 185, 281-292.	1.1	25
6	Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis. Brain Pathology, 2021, 31, 312-332.	2.1	9
7	William C. Eckelman: An anchor of stability with a quiet voice that nurtured a new field. Nuclear Medicine and Biology, 2021, 92, 2-4.	0.3	0
8	Association of PET-based estradiol-challenge test for breast cancer progesterone receptors with response to endocrine therapy. Nature Communications, 2021, 12, 733.	5.8	33
9	Defining the Energetic Basis for a Conformational Switch Mediating Ligand-Independent Activation of Mutant Estrogen Receptors in Breast Cancer. Molecular Cancer Research, 2021, 19, 1559-1570.	1.5	6
10	Radiosynthesis and Evaluation of Talazoparib and Its Derivatives as PARP-1-Targeting Agents. Biomedicines, 2021, 9, 565.	1.4	18
11	Dual-mechanism estrogen receptor inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
12	Pathway Preferential Estrogens Prevent Hepatosteatosis Due to Ovariectomy and High-Fat Diets. Nutrients, 2021, 13, 3334.	1.7	5
13	Meet our advisors: An interview with John Katzenellenbogen. Journal of Labelled Compounds and Radiopharmaceuticals, 2021, 64, 527-533.	0.5	0
14	Determination of molar activity of [18F]fluoride by HPLC via sulfonyl derivatization. Applied Radiation and Isotopes, 2021, 176, 109865.	0.7	1
15	Abstract P205: Novel 1,1-diarylethylene compounds degrade FOXM1 and selectively and potently reduce survival of high-grade serous ovarian cancer cells. , 2021, , .		0
16	Transcription Regulation and Genome Rewiring Governing Sensitivity and Resistance to FOXM1 Inhibition in Breast Cancer. Cancers, 2021, 13, 6282.	1.7	7
17	Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers, 2020, 12, 2677.	1.7	17
18	The tissue-specific effects of different 17β-estradiol doses reveal the key sensitizing role of AF1 domain in ERα activity. Molecular and Cellular Endocrinology, 2020, 505, 110741.	1.6	10

#	Article	IF	CITATIONS
19	PET Imaging Agents (FES, FFNP, and FDHT) for Estrogen, Androgen, and Progesterone Receptors to Improve Management of Breast and Prostate Cancers by Functional Imaging. Cancers, 2020, 12, 2020.	1.7	19
20	A mutant form of ERα associated with estrogen insensitivity affects the coupling between ligand binding and coactivator recruitment. Science Signaling, 2020, 13, .	1.6	5
21	Long-Term Follow-Up and Treatment of a Female With Complete Estrogen Insensitivity. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1478-1488.	1.8	4
22	Suppression of breast cancer metastasis and extension of survival by a new antiestrogen in a preclinical model driven by mutant estrogen receptors. Breast Cancer Research and Treatment, 2020, 181, 297-307.	1.1	8
23	Differential Actions of Estrogen Receptor α and β via Nongenomic Signaling in Human Prostate Stem and Progenitor Cells. Endocrinology, 2019, 160, 2692-2708.	1.4	23
24	Analogues of ERβ ligand chloroindazole exert immunomodulatory and remyelinating effects in a mouse model of multiple sclerosis. Scientific Reports, 2019, 9, 503.	1.6	17
25	Diffusion tensor imaging identifies aspects of therapeutic estrogen receptor β ligand-induced remyelination in a mouse model of multiple sclerosis. Neurobiology of Disease, 2019, 130, 104501.	2.1	9
26	Pocket similarity identifies selective estrogen receptor modulators as microtubule modulators at the taxane site. Nature Communications, 2019, 10, 1033.	5.8	22
27	Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling. Cancer Research, 2019, 79, 2494-2510.	0.4	81
28	Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. Npj Breast Cancer, 2019, 5, 45.	2.3	54
29	Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nature Reviews Cancer, 2018, 18, 377-388.	12.8	148
30	Respective role of membrane and nuclear estrogen receptor (ER) α in the mandible of growing mice: Implications for ERα modulation. Journal of Bone and Mineral Research, 2018, 33, 1520-1531.	3.1	9
31	Copper-mediated nucleophilic radiobromination of aryl boron precursors: Convenient preparation of a radiobrominated PARP-1 inhibitor. Tetrahedron Letters, 2018, 59, 1963-1967.	0.7	24
32	Non-estrogenic Xanthohumol Derivatives Mitigate Insulin Resistance and Cognitive Impairment in High-Fat Diet-induced Obese Mice. Scientific Reports, 2018, 8, 613.	1.6	53
33	Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology, 2018, 159, 119-131.	1.4	17
34	Antagonists for Constitutively Active Mutant Estrogen Receptors: Insights into the Roles of Antiestrogen-Core and Side-Chain. ACS Chemical Biology, 2018, 13, 3374-3384.	1.6	8
35	Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology, 2018, 159, 3848-3859.	1.4	25
36	Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6291-6296.	3.3	42

JOHN A KATZENELLENBOGEN

#	Article	IF	CITATIONS
37	Long-Term Administration of Conjugated Estrogen and Bazedoxifene Decreased Murine Fecal β-Glucuronidase Activity Without Impacting Overall Microbiome Community. Scientific Reports, 2018, 8, 8166.	1.6	40
38	New Class of Selective Estrogen Receptor Degraders (SERDs): Expanding the Toolbox of PROTAC Degrons. ACS Medicinal Chemistry Letters, 2018, 9, 803-808.	1.3	47
39	Predominant Role of Nuclear Versus Membrane Estrogen Receptor α in Arterial Protection: Implications for Estrogen Receptor α Modulation in Cardiovascular Prevention/Safety. Journal of the American Heart Association, 2018, 7, .	1.6	45
40	Estrogens and selective estrogen receptor modulators differentially antagonize Runx2 in ST2 mesenchymal progenitor cells. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 10-17.	1.2	6
41	Preliminary evaluation of a novel 18F-labeled PARP-1 ligand for PET imaging of PARP-1 expression in prostate cancer. Nuclear Medicine and Biology, 2018, 66, 26-31.	0.3	29
42	Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Science Signaling, 2018, 11, .	1.6	17
43	Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2018, 157, 817-836.	2.6	30
44	Triaryl Pyrazole Tollâ€Like Receptor Signaling Inhibitors: Structure–Activity Relationships Governing Pan―and Selective Signaling Inhibitors. ChemMedChem, 2018, 13, 2208-2216.	1.6	6
45	The SERM/SERD bazedoxifene disrupts ESR1 helix 12 to overcome acquired hormone resistance in breast cancer cells. ELife, 2018, 7, .	2.8	72
46	Estrogens and androgens inhibit association of RANKL with the preâ€osteoblast membrane through postâ€translational mechanisms. Journal of Cellular Physiology, 2017, 232, 3798-3807.	2.0	15
47	MMTV-PyMT and Derived Met-1 Mouse Mammary Tumor Cells as Models for Studying the Role of the Androgen Receptor in Triple-Negative Breast Cancer Progression. Hormones and Cancer, 2017, 8, 69-77.	4.9	45
48	Evaluation of aromatic radiobromination by nucleophilic substitution using diaryliodonium salt precursors. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 450-456.	0.5	15
49	Structural and Molecular Mechanisms of Cytokine-Mediated Endocrine Resistance in Human Breast Cancer Cells. Molecular Cell, 2017, 65, 1122-1135.e5.	4.5	99
50	Exploring the Structural Compliancy versus Specificity of the Estrogen Receptor Using Isomeric Three-Dimensional Ligands. ACS Chemical Biology, 2017, 12, 494-503.	1.6	15
51	Systems Structural Biology Analysis of Ligand Effects on ERα Predicts Cellular Response to Environmental Estrogens and Anti-hormone Therapies. Cell Chemical Biology, 2017, 24, 35-45.	2.5	34
52	Activating <i>ESR1</i> Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discovery, 2017, 7, 277-287.	7.7	286
53	Selenophenes: Introducing a New Element into the Core of Nonâ€Steroidal Estrogen Receptor Ligands. ChemMedChem, 2017, 12, 235-249.	1.6	19
54	Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors. Cancer Research, 2017, 77, 5602-5613.	0.4	48

#	Article	IF	CITATIONS
55	17β-Estradiol Dysregulates Innate Immune Responses to Pseudomonas aeruginosa Respiratory Infection and Is Modulated by Estrogen Receptor Antagonism. Infection and Immunity, 2017, 85, .	1.0	50
56	Adamantyl Antiestrogens with Novel Side Chains Reveal a Spectrum of Activities in Suppressing Estrogen Receptor Mediated Activities in Breast Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 6321-6336.	2.9	27
57	Full antagonism of the estrogen receptor without a prototypical ligand side chain. Nature Chemical Biology, 2017, 13, 111-118.	3.9	48
58	Estrogen receptor alpha somatic mutations Y537S and D538C confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. ELife, 2016, 5, .	2.8	212
59	Cyclic Ketoximes as Estrogen Receptorâ€Î² Selective Agonists. ChemMedChem, 2016, 11, 1752-1761.	1.6	1
60	Dietary licorice root supplementation reduces dietâ€induced weight gain, lipid deposition, and hepatic steatosis in ovariectomized mice without stimulating reproductive tissues and mammary gland. Molecular Nutrition and Food Research, 2016, 60, 369-380.	1.5	51
61	Predictive features of ligandâ€specific signaling through the estrogen receptor. Molecular Systems Biology, 2016, 12, 864.	3.2	41
62	Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Science Signaling, 2016, 9, ra53.	1.6	81
63	Extranuclear Actions of the Androgen Receptor Enhance Glucose-Stimulated Insulin Secretion in the Male. Cell Metabolism, 2016, 23, 837-851.	7.2	130
64	Inhibiting androgen receptor nuclear entry in castration-resistant prostate cancer. Nature Chemical Biology, 2016, 12, 795-801.	3.9	15
65	Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Molecular and Cellular Endocrinology, 2016, 437, 190-200.	1.6	22
66	Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology, 2016, 157, 3731-3741.	1.4	30
67	Imaging Diagnostic and Therapeutic Targets: Steroid Receptors in Breast Cancer. Journal of Nuclear Medicine, 2016, 57, 75S-80S.	2.8	43
68	Multiple Beneficial Roles of Repressor of Estrogen Receptor Activity (REA) in Suppressing the Progression of Endometriosis. Endocrinology, 2016, 157, 900-912.	1.4	15
69	Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer. Journal of Medicinal Chemistry, 2016, 59, 219-237.	2.9	50
70	Estrogen Receptor-Selective Agonists Modulate Learning in Female Rats in a Dose- and Task-Specific Manner. Endocrinology, 2016, 157, 292-303.	1.4	28
71	Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids, 2016, 105, 42-49.	0.8	48
72	<i>Science Signaling</i> podcast for 24 May 2016: Designer estrogens. Science Signaling, 2016, 9, pc12.	1.6	0

#	Article	IF	CITATIONS
73	Salicylketoximes That Target Glucose Transporterâ€1 Restrict Energy Supply to Lung Cancer Cells. ChemMedChem, 2015, 10, 1892-1900.	1.6	19
74	Facile purification and click labeling with 2-[18F]fluoroethyl azide using solid phase extraction cartridges. Tetrahedron Letters, 2015, 56, 952-954.	0.7	17
75	Dual suppression of estrogenic and inflammatory activities for targeting of endometriosis. Science Translational Medicine, 2015, 7, 271ra9.	5.8	120
76	PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Science Translational Medicine, 2015, 7, 283ra51.	5.8	276
77	Longitudinal Noninvasive Imaging of Progesterone Receptor as a Predictive Biomarker of Tumor Responsiveness to Estrogen Deprivation Therapy. Clinical Cancer Research, 2015, 21, 1063-1070.	3.2	31
78	Imidoyl dichlorides as new reagents for the rapid formation of 2-aminobenzimidazoles and related azoles. Tetrahedron Letters, 2015, 56, 6097-6099.	0.7	9
79	Preparation of <i>o</i> -Fluorophenols from Nonaromatic Precursors: Mechanistic Considerations for Adaptation to Fluorine-18 Radiolabeling. Organic Letters, 2015, 17, 5540-5543.	2.4	20
80	Protective Hematopoietic Effect of Estrogens in a Mouse Model of Thrombosis: Respective Roles of Nuclear Versus Membrane Estrogen Receptor α. Endocrinology, 2015, 156, 4293-4301.	1.4	8
81	Fluorescent Nanoconjugate Derivatives with Enhanced Photostability for Single Molecule Imaging. Analytical Chemistry, 2015, 87, 11048-11057.	3.2	14
82	Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands. Journal of Chemical Information and Modeling, 2015, 55, 1953-1961.	2.5	31
83	Estrogen Receptor Alpha/Co-activator Interaction Assay: TR-FRET. Methods in Molecular Biology, 2015, 1278, 545-553.	0.4	5
84	Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. ELife, 2014, 3, e02057.	2.8	113
85	Optimization of the preparation of fluorineâ€18â€labeled steroid receptor ligands 16alphaâ€{ ¹⁸ F]fluoroestradiol (FES), [¹⁸ F]fluoro furanyl norprogesterone (FFNP), and 16betaâ€{ ¹⁸ F]fluoroâ€5alphaâ€dihydrotestosterone (FDHT) as radiopharmaceuticals. Iournal of Labelled Compounds and Radiopharmaceuticals. 2014. 57, 371-377.	0.5	32
86	Multiple functional therapeutic effects of the estrogen receptor Î ² agonist indazole-Cl in a mouse model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18061-18066.	3.3	77
87	The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Molecular Medicine, 2014, 6, 1328-1346.	3.3	96
88	Synthesis and receptor binding in trans-CD ring-fused A-CD estrogens: Comparison with the cis-fused isomers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3841-3844.	1.0	1
89	Estrogen receptors alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. Steroids, 2014, 90, 13-29.	0.8	490
90	Cyclin D1 Integrates Estrogen-Mediated DNA Damage Repair Signaling. Cancer Research, 2014, 74, 3959-3970.	0.4	32

#	Article	IF	CITATIONS
91	Integrative genomics of gene and metabolic regulation by estrogen receptors α and β, and their coregulators. Molecular Systems Biology, 2013, 9, 676.	3.2	81
92	Ligand-binding dynamics rewire cellular signaling via estrogen receptor-α. Nature Chemical Biology, 2013, 9, 326-332.	3.9	53
93	Synthesis and biological evaluation of RGD peptides with the99mTc/188Re chelated iminodiacetate core: highly enhanced uptake and excretion kinetics of theranostics against tumor angiogenesis. RSC Advances, 2013, 3, 782-792.	1.7	26
94	Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB Journal, 2013, 27, 4406-4418.	0.2	92
95	Designer antiandrogens join the race against drug resistance. ELife, 2013, 2, e00692.	2.8	6
96	Assessment of Progesterone Receptors in Breast Carcinoma by PET with 21- ¹⁸ F-Fluoro-16α,17α-[(<i>R</i>)-(1′-α-furylmethylidene)Dioxy]-19-Norpregn-4-Ene-3,20-Dione Journal of Nuclear Medicine, 2012, 53, 363-370.	. 2.8	71
97	Small-Animal PET of Steroid Hormone Receptors Predicts Tumor Response to Endocrine Therapy Using a Preclinical Model of Breast Cancer. Journal of Nuclear Medicine, 2012, 53, 1119-1126.	2.8	63
98	Bicyclic core estrogens as full antagonists: synthesis, biological evaluation and structure–activity relationships of estrogen receptor ligands based on bridged oxabicyclic core arylsulfonamides. Organic and Biomolecular Chemistry, 2012, 10, 8692.	1.5	30
99	Identification and Structure–Activity Relationships of a Novel Series of Estrogen Receptor Ligands Based on 7-Thiabicyclo[2.2.1]hept-2-ene-7-oxide. Journal of Medicinal Chemistry, 2012, 55, 2324-2341.	2.9	36
100	Development of Selective Estrogen Receptor Modulator (SERM)â€Like Activity Through an Indirect Mechanism of Estrogen Receptor Antagonism: Defining the Binding Mode of 7â€Oxabicyclo[2.2.1]heptâ€5â€ene Scaffold Core Ligands. ChemMedChem, 2012, 7, 1094-1100.	1.6	27
101	The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: Addressing the "Core Issue―in the Design of Estrogen Receptor Ligands. Journal of Medicinal Chemistry, 2011, 54, 5271-5282.	2.9	76
102	Reduction of stimulated sodium iodide symporter expression by estrogen receptor ligands in breast cancer cells. Nuclear Medicine and Biology, 2011, 38, 287-294.	0.3	4
103	Design, Synthesis, and Preclinical Characterization of the Selective Androgen Receptor Modulator (SARM) RAD140 . ACS Medicinal Chemistry Letters, 2011, 2, 124-129.	1.3	48
104	Exploration of Dimensions of Estrogen Potency. Journal of Biological Chemistry, 2011, 286, 12971-12982.	1.6	76
105	Coupling of receptor conformation and ligand orientation determine graded activity. Nature Chemical Biology, 2010, 6, 837-843.	3.9	121
106	Development of [F-18]Fluorine-Substituted Tanaproget as a Progesterone Receptor Imaging Agent for Positron Emission Tomography. Bioconjugate Chemistry, 2010, 21, 1096-1104.	1.8	42
107	Characterization of the Pharmacophore Properties of Novel Selective Estrogen Receptor Downregulators (SERDs). Journal of Medicinal Chemistry, 2010, 53, 3320-3329.	2.9	49
108	PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Research and Treatment, 2009, 113, 509-517.	1.1	189

#	Article	IF	CITATIONS
109	Analogs of methyl-piperidinopyrazole (MPP): Antiestrogens with estrogen receptor α selective activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 108-110.	1.0	46
110	NFκB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nature Chemical Biology, 2008, 4, 241-247.	3.9	149
111	Evaluation of a bromine-76-labeled progestin 16α,17α-dioxolane for breast tumor imaging and radiotherapy: in vivo biodistribution and metabolic stability studies. Nuclear Medicine and Biology, 2008, 35, 655-663.	0.3	16
112	Synthesis of 7α-(Fluoromethyl)dihydrotestosterone and 7α-(Fluoromethyl)nortestosterone, Structurally Paired Androgens Designed To Probe the Role of Sex Hormone Binding Globulin in Imaging Androgen Receptors in Prostate Tumors by Positron Emission Tomography. Journal of Organic Chemistry, 2007, 72, 5546-5554.	1.7	23
113	Fluorine-Substituted Cyclofenil Derivatives as Estrogen Receptor Ligands:Â Synthesis and Structureâ [°] Affinity Relationship Study of Potential Positron Emission Tomography Agents for Imaging Estrogen Receptors in Breast Cancer. Journal of Medicinal Chemistry, 2006, 49, 2496-2511.	2.9	45
114	Kinase-Specific Phosphorylation of the Estrogen Receptor Changes Receptor Interactions with Ligand, Deoxyribonucleic Acid, and Coregulators Associated with Alterations in Estrogen and Tamoxifen Activity. Molecular Endocrinology, 2006, 20, 3120-3132.	3.7	166
115	Receptor Imaging of Tumors (Non-Peptide). , 2005, , 715-750.		3
116	Designing Effective Hybrid Toxins. Chemistry and Biology, 2005, 12, 719-721.	6.2	2
117	A Proteomic Microarray Approach for Exploring Ligand-initiated Nuclear Hormone Receptor Pharmacology, Receptor Selectivity, and Heterodimer Functionality. Molecular and Cellular Proteomics, 2005, 4, 267-277.	2.5	35
118	Coactivator Proteins as Determinants of Estrogen Receptor Structure and Function: Spectroscopic Evidence for a Novel Coactivator-Stabilized Receptor Conformation. Molecular Endocrinology, 2005, 19, 1516-1528.	3.7	45
119	Synthesis of an Estrogen Receptor β-Selective Radioligand:Â 5-[18F]Fluoro-(2R*,3S*)-2,3-bis(4-hydroxyphenyl)pentanenitrile and Comparison of in Vivo Distribution with 16α-[18F]Fluoro-17β-estradiol. Journal of Medicinal Chemistry, 2005, 48, 6366-6378.	2.9	74
120	Synthesis and Evaluation of Estrogen Receptor Ligands with Bridged Oxabicyclic Cores Containing a Diarylethylene Motif:  Estrogen Antagonists of Unusual Structure. Journal of Medicinal Chemistry, 2005, 48, 7261-7274.	2.9	64
121	Ligand-Induced Changes in Estrogen Receptor Conformation As Measured by Site-Directed Spin Labeling. Biochemistry, 2004, 43, 1891-1907.	1.2	31
122	Bridged Bicyclic Cores Containing a 1,1-Diarylethylene Motif Are High-Affinity Subtype-Selective Ligands for the Estrogen Receptor. Journal of Medicinal Chemistry, 2003, 46, 1589-1602.	2.9	89
123	Estrogen Receptor Dimerization: Ligand Binding Regulates Dimer Affinity and DimerDissociation Rate. Molecular Endocrinology, 2002, 16, 2706-2719.	3.7	145
124	Antagonists Selective for Estrogen Receptor α. Endocrinology, 2002, 143, 941-947.	1.4	231
125	A convenient method for the preparation of highly substituted pyrimidines: Synthesis of tri―and tetraâ€subsituted pyrimidines from 1,3â€dicarbonyl compounds and <i>N,N,N</i> â€trisâ€(trimethylsilyl)amidines. Journal of Heterocyclic Chemistry, 2002, 39, 1101-1104.	1.4	25
126	Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nature Structural Biology, 2002, 9, 359-64.	9.7	188

#	Article	IF	CITATIONS
127	Estrogen Receptor-β Potency-Selective Ligands:  Structureâ^'Activity Relationship Studies of Diarylpropionitriles and Their Acetylene and Polar Analogues. Journal of Medicinal Chemistry, 2001, 44, 4230-4251.	2.9	648
128	Comparison of animal models for the evaluation of radiolabeled androgens. Nuclear Medicine and Biology, 2001, 28, 613-626.	0.3	19
129	Activation of estrogen receptor β is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes. FEBS Letters, 2001, 502, 103-108.	1.3	97
130	Metabolic Flare: Indicator of Hormone Responsiveness in Advanced Breast Cancer. Journal of Clinical Oncology, 2001, 19, 2797-2803.	0.8	377
131	Triarylpyrazoles with basic side chains. Bioorganic and Medicinal Chemistry, 2001, 9, 151-161.	1.4	86
132	Estrogen pyrazoles: defining the pyrazole core structure and the orientation of substituents in the ligand binding pocket of the estrogen receptor. Bioorganic and Medicinal Chemistry, 2001, 9, 141-150.	1.4	96
133	Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. Journal of Cellular Biochemistry, 2001, 83, 448-462.	1.2	75
134	Halogenâ€substituted triarylpyrazoles: Potential estrogen receptorâ€alpha selective radiopharmaceuticals. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S342.	0.5	0
135	Probing Conformational Changes in the Estrogen Receptor: Evidence for a Partially Unfolded Intermediate Facilitating Ligand Binding and Release. Molecular Endocrinology, 2001, 15, 421-428.	3.7	60
136	Pyrazole Ligands: Structureâ^'Affinity/Activity Relationships and Estrogen Receptor-α-Selective Agonists. Journal of Medicinal Chemistry, 2000, 43, 4934-4947.	2.9	724
137	Preparation of Hexahydrobenzo[f]isoquinolines Using a Vinylogous Pictetâ^'Spengler Cyclization. Organic Letters, 2000, 2, 3635-3638.	2.4	24
138	Solid-Phase Synthesis of Tetrasubstituted Pyrazoles, Novel Ligands for the Estrogen Receptor. ACS Combinatorial Science, 2000, 2, 318-329.	3.3	80
139	Regioselective Synthesis of 1,3,5-Triaryl-4-alkylpyrazoles:  Novel Ligands for the Estrogen Receptor. Organic Letters, 2000, 2, 2833-2836.	2.4	180
140	Coactivator Peptides Have a Differential Stabilizing Effect on the Binding of Estrogens and Antiestrogens with the Estrogen Receptor. Molecular Endocrinology, 1999, 13, 1912-1923.	3.7	123
141	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-α or Estrogen Receptor-β*. Endocrinology, 1999, 140, 800-804.	1.4	305
142	Positron emission tomographic assessment of ?metabolic flare" to predict response of metastatic breast cancer to antiestrogen therapy. European Journal of Nuclear Medicine and Molecular Imaging, 1999, 26, 51-56.	3.3	254
143	A Polymer-Supported Phosphazine as a Stable and Practical Reagent in the Three-Component Synthesis of Substituted (Cyclopentadienyl)tricarbonylrhenium Complexes. Angewandte Chemie - International Edition, 1999, 38, 1617-1620.	7.2	24
144	Comparative breast tumor imaging and comparative in vitro metabolism of 16α-[18F]Fluoroestradiol-17β and 16β-[18f]fluoromoxestrol in isolated hepatocytes. Nuclear Medicine and Biology, 1999, 26, 123-130.	0.3	47

#	Article	IF	CITATIONS
145	Integrated "3+1―Oxorhenium(V) Complexes as Estrogen Mimics. Bioconjugate Chemistry, 1999, 10, 119-129.	1.8	29
146	Three-Component Synthesis of Substituted η5-Cyclopentadienyltricarbonylrhenium Complexes: Scope, Limitations, and Mechanistic Interpretations. Organometallics, 1999, 18, 2519-2530.	1.1	30
147	Estrogen Receptor Subtype-Selective Ligands:  Asymmetric Synthesis and Biological Evaluation of cis- and trans-5,11-Dialkyl- 5,6,11,12-tetrahydrochrysenes. Journal of Medicinal Chemistry, 1999, 42, 2456-2468.	2.9	150
148	Preparation of Cyclopentadienyltricarbonylrhenium Complexes Using a Double Ligand-Transfer Reaction. Organometallics, 1998, 17, 2009-2017.	1.1	83
149	Synthesis of a Tetradentate Oxorhenium(V) Complex Mimic of a Steroidal Estrogen. Journal of Organic Chemistry, 1997, 62, 6290-6297.	1.7	41
150	Synthesis and Spectroscopic Characterization of Two Azatetrahydrochrysenes as Potential Fluorescent Ligands for the Estrogen Receptor. Journal of Organic Chemistry, 1997, 62, 7650-7657.	1.7	10
151	1-Aryl-2-pyridyl-3,4-dihydronaphthalenes:Â Photofluorogenic Ligands for the Estrogen Receptor. Journal of Organic Chemistry, 1997, 62, 1043-1057.	1.7	22
152	Altered Ligand Binding Properties and Enhanced Stability of a Constitutively Active Estrogen Receptor:Â Evidence That an Open Pocket Conformation Is Required for Ligand Interactionâ€. Biochemistry, 1997, 36, 14897-14905.	1.2	203
153	Trifluoromethyl-Substituted Imidazolines:  Novel Precursors of Trifluoromethyl Ketones Amenable to Peptide Synthesis. Journal of the American Chemical Society, 1996, 118, 8485-8486.	6.6	28
154	Haloenol lactones as inactivators and substrates of aldehyde dehydrogenase. The Protein Journal, 1996, 15, 639-648.	1.1	3
155	Fluorine-18-labeled progestin 16.alpha.,17.alphadioxolanes: development of high-affinity ligands for the progesterone receptor with high in vivo target site selectivity. Journal of Medicinal Chemistry, 1995, 38, 328-337.	2.9	65
156	Analysis of the Structural Core of the Human Estrogen Receptor Ligand Binding Domain by Selective Proteolysis/Mass Spectrometric Analysis. Biochemistry, 1995, 34, 12605-12615.	1.2	72
157	Oxohexestrol derivatives labeled with fluorine-18. Synthesis, receptor binding and in vivo distribution of two non-steroidal estrogens as potential breast tumor imaging agents. Nuclear Medicine and Biology, 1994, 21, 25-39.	0.3	14
158	Synthesis and NMR spectrum of [13C18]-meso-hexestrol, a fully carbon-13 substituted ligand for NMR studies of the estrogen receptor. Magnetic Resonance in Chemistry, 1993, 31, 977-986.	1.1	1
159	CHARACTERIZATION OF THE SPECTROSCOPIC PROPERTIES OF A TETRAHYDROCHRYSENE SYSTEM CONTAINING A RIGIDIFIED HYDROXYNITROSTILBENE CHROMOPHORE: AN INHERENTLY FLUORESCENT LIGAND DESIGNED FOR THE ESTROGEN RECEPTOR. Photochemistry and Photobiology, 1993, 57, 616-628.	1.3	19
160	THE EFFECT OF ACCEPTOR GROUP VARIATION ON THE SOLVATOCHROMISM OF DONOR-ACCEPTOR FLUOROPHORES. Photochemistry and Photobiology, 1993, 58, 785-794.	1.3	11
161	16β-[18F]fluoromoxestrol: A potent, metabolically stable positron emission tomography imaging agent for estrogen receptor positive human breast tumors. Life Sciences, 1993, 53, 811-819.	2.0	32
162	Fluorine-18 labeled progestin ketals: synthesis and target tissue uptake selectivity of potential imaging agents for receptor-positive breast tumors. Journal of Medicinal Chemistry, 1993, 36, 1120-1127.	2.9	48

#	Article	IF	CITATIONS
163	Titration of the in vivo uptake of 16α-[18F]fluoroestradiol by target tissues in the rat: Competition by tamoxifen, and implications for quantitating estrogen receptors in vivo and the use of animal models in receptor-binding radiopharmaceutical development. Nuclear Medicine and Biology, 1993, 20, 735-745.	0.3	49
164	Preparation and evaluation of 17-ethynyl-substituted 16α-[18F]fluoroestradiols: Selective receptor-based PET imaging agents. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1992, 19, 363-374.	0.3	23
165	Fluorine-substituted corticosteroids: Synthesis and evaluation as potential receptor-based imaging agents for positron emission tomography of the brain. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1992, 19, 461-480.	0.3	13
166	Donor-acceptor tetrahydrochrysenes, inherently fluorescent, high-affinity ligands for the estrogen receptor: binding and fluorescence characteristics and fluorometric assay of receptor. Biochemistry, 1992, 31, 11536-11545.	1.2	52
167	11.betaMethoxy-, 11.betaethyl, and 17.alphaethynyl-substituted 16.alphafluoroestradiols: receptor-based imaging agents with enhanced uptake efficiency and selectivity. Journal of Medicinal Chemistry, 1990, 33, 3143-3155.	2.9	128
168	Binding of 16α-[18F]Fluoro-17β-estradiol to alphafetoprotein in Sprague-Dawley female rats affects blood levels. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1990, 17, 769-773.	0.3	5
169	HYDROXYSTILBAZOLES AND HYDROXYAZAPHENANTHRENES: PHOTOCYCLIZATION AND FLUORESCENCE STUDIES. Photochemistry and Photobiology, 1988, 47, 503-516.	1.3	23
170	11β -Chloromethyl-[3H]estradiol-17β: A very high affinity, reversible ligand for the estrogen receptor. The Journal of Steroid Biochemistry, 1987, 28, 361-370.	1.3	36
171	Characterization of the uptake of 16α-([18F]fluoro)-17β-estradiol in DMBA-induced mammary tumors. International Journal of Radiation Applications and Instrumentation Part B, Nuclear Medicine and Biology, 1987, 14, 15-25.	0.3	39
172	NCA 16α-[18F]fluoroestradiol-17β: The effect of reaction vessel on fluorine-18 resolubilization, product yield, and effective specific activity. International Journal of Radiation Applications and Instrumentation Part A, Applied Radiation and Isotopes, 1986, 37, 217-221.	0.5	60
173	Facile geometric isomerization of phenolic non-steroidal estrogens and antiestrogens: Limitations to the interpretation of experiments characterizing the activity of individual isomers. The Journal of Steroid Biochemistry, 1985, 22, 589-596.	1.3	85
174	Synthesis of 16-fluoroestrogens by unusually facile fluoride ion displacement reactions: prospects for the preparation of fluorine-18 labeled estrogens. Journal of Organic Chemistry, 1984, 49, 4900-4905.	1.7	73
175	(2â^—, 3â^—)-1- [18fluoro-2, 3-bis (4-hydroxyphenyl) pentane ([18F]fluoronorhexestrol), A positron-emitting estrogen that shows highly-selective, receptor-mediated uptake by target tissues in vivo. Life Sciences, 1983, 33, 1933-1938.	2.0	26
176	Factors affecting the target site uptake selectivity of estrogen radiopharmaceuticals: Serum binding and endogenous estrogens. The Journal of Steroid Biochemistry, 1983, 18, 635-641.	1.3	40
177	Methodology for the synthesis and specific activity determination of 16α-[77Br]-Bromoestradiol-17 β and 16α-[77Br]-11 β-methoxyestradiol-17 β, Two estrogen receptor-binding radiopharmaceuticals. The International Journal of Applied Radiation and Isotopes, 1982, 33, 545-551.	0.7	60
178	Biological Potency and Uterine Estrogen Receptor Interactions of the Metabolites of the Antiestrogens Cl628 and U23,469*. Endocrinology, 1981, 108, 164-172.	1.4	39
179	Estrogen receptor-based imaging agents. 1. Synthesis and receptor binding affinity of some aromatic and D-ring halogenated estrogens. Journal of Medicinal Chemistry, 1980, 23, 994-1002.	2.9	57
180	Iodohexestrols. I. Synthesis and photoreactivity of iodinated hexestrol derivatives. Biochemistry, 1975, 14, 1736-1741.	1.2	13

#	Article	IF	CITATIONS
181	Iodohexestrols. II. Characterization of the binding and estrogenic activity of iodinated hexestrol derivatives, in vitro and in vivo. Biochemistry, 1975, 14, 1742-1750.	1.2	41
182	An Efficient, General Synthesis of Alkylsulfinyltoluidides. Synthetic Communications, 1974, 4, 137-141.	1.1	6
183	Photoaffinity labels for estrogen binding proteins of rat uterus. Biochemistry, 1973, 12, 4085-4092.	1.2	245
184	Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor-Î \pm or Estrogen Receptor-I 2 . , 0, .		107