Manuel Becerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of the MuSK Tyrosine Kinase. Structure, 2002, 10, 1187-1196.	1.6	122
2	Influence of substituting milk powder for whey powder on yoghurt quality. Trends in Food Science and Technology, 2002, 13, 334-340.	7.8	102
3	Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. Journal of Structural Biology, 2012, 177, 392-401.	1.3	88
4	The yeast transcriptome in aerobic and hypoxic conditions: effects ofhap1,rox1,rox3andsrb10deletions. Molecular Microbiology, 2002, 43, 545-555.	1.2	77
5	Enzyme encapsulation on chitosan microbeads. Process Biochemistry, 1997, 32, 211-216.	1.8	69
6	Lactose bioconversion by calcium-alginate immobilization of Kluyveromyces lactis cells. Enzyme and Microbial Technology, 2001, 29, 506-512.	1.6	51
7	Cellulases from Thermophiles Found by Metagenomics. Microorganisms, 2018, 6, 66.	1.6	46
8	Reoxidation of cytosolic NADPH inKluyveromyces lactis. FEMS Yeast Research, 2006, 6, 371-380.	1.1	43
9	Title is missing!. Biotechnology Letters, 1998, 12, 253-256.	0.5	40
10	Expression of a low-molecular-weight (10 kDa) calcium binding protein in glial cells of the brain of the trout (Teleostei). Anatomy and Embryology, 1997, 196, 403-416.	1.5	39
11	New secretory strategies for Kluyveromyces lactis β-galactosidase. Protein Engineering, Design and Selection, 2001, 14, 379-386.	1.0	39
12	Microbial diversity analysis and screening for novel xylanase enzymes from the sediment of the Lobios Hot Spring in Spain. Scientific Reports, 2019, 9, 11195.	1.6	37
13	Structural Analysis of Saccharomyces cerevisiae α-Galactosidase and Its Complexes with Natural Substrates Reveals New Insights into Substrate Specificity of GH27 Glycosidases. Journal of Biological Chemistry, 2010, 285, 28020-28033.	1.6	36
14	Biobutanol from cheese whey. Microbial Cell Factories, 2015, 14, 27.	1.9	35
15	Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microbial Cell Factories, 2006, 5, 41.	1.9	33
16	Yeast β-galactosidase in solid-state fermentations. Enzyme and Microbial Technology, 1996, 19, 39-44.	1.6	32
17	Heterologous Kluyveromyces lactis β-galactosidase production and release by Saccharomyces cerevisiae osmotic-remedial thermosensitive autolytic mutants. Biochimica Et Biophysica Acta - General Subjects, 1997, 1335, 235-241.	1.1	27
18	Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. Journal of Biotechnology, 2004, 109, 131-137.	1.9	27

MANUEL BECERRA

#	Article	IF	CITATIONS
19	Structural features of <i>Aspergillus niger</i> βâ€galactosidase define its activity against glycoside linkages. FEBS Journal, 2017, 284, 1815-1829.	2.2	25
20	Rational mutagenesis by engineering disulphide bonds improves Kluyveromyces lactis beta-galactosidase for high-temperature industrial applications. Scientific Reports, 2017, 7, 45535.	1.6	24
21	lxr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied Microbiology and Biotechnology, 2012, 94, 173-184.	1.7	22
22	Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol. Frontiers in Microbiology, 2019, 10, 405.	1.5	22
23	Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome, 2004, 47, 970-978.	0.9	21
24	Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides. Microbial Cell Factories, 2019, 18, 172.	1.9	20
25	Dealing with different methods for Kluyveromyces lactis β-galactosidase purification. Biological Procedures Online, 1998, 1, 48-58.	1.4	19
26	Genome-Wide Analysis of the Yeast Transcriptome Upon Heat and Cold Shock. Comparative and Functional Genomics, 2003, 4, 366-375.	2.0	18
27	An approach to the hypoxic and oxidative stress responses inKluyveromyces lactisby analysis of mRNA levels. FEMS Yeast Research, 2007, 7, 702-714.	1.1	17
28	Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Computational and Structural Biotechnology Journal, 2021, 19, 1214-1232.	1.9	17
29	Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microbial Cell Factories, 2018, 17, 137.	1.9	16
30	The yeast hypoxic responses, resources for new biotechnological opportunities. Biotechnology Letters, 2012, 34, 2161-2173.	1.1	15
31	Improved bioethanol production in an engineered K luyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI 1. Microbial Biotechnology, 2015, 8, 319-330.	2.0	15
32	Title is missing!. Biotechnology Letters, 2001, 23, 33-40.	1.1	13
33	lxr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Research, 2010, 10, 309-321.	1.1	13
34	Functional characterization of KlHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 241-249.	0.8	11
35	A transcriptome analysis of Kluyveromyces lactis growing in cheese whey. International Dairy Journal, 2006, 16, 207-214.	1.5	11
36	Metabolic engineering for direct lactose utilization by Saccharomyces cerevisiae. Biotechnology Letters, 2002, 24, 1391-1396.	1.1	10

MANUEL BECERRA

#	Article	IF	CITATIONS
37	Genome-Wide analysis of yeast transcription upon calcium shortage. Cell Calcium, 2002, 32, 83-91.	1.1	9
38	Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from <i>Kluyveromyces lactis</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 297-300.	0.7	9
39	Dual function of lxr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMC-boxes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 256-269.	0.9	9
40	Kluyveromyces lactis β-galactosidase crystallization using full-factorial experimental design. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 178-182.	1.8	8
41	Functional motifs outside the kinase domain of yeast Srb10p. Their role in transcriptional regulation and protein-interactions with Tup1p and Srb11p. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1227-1235.	1.1	7
42	KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis. Fungal Genetics and Biology, 2015, 82, 95-103.	0.9	7
43	Functional characterisation and transcriptional regulation of the KIHEM12 gene from Kluyveromyces lactis. Current Genetics, 2004, 46, 147-57.	0.8	6
44	Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin. Microbiology (United Kingdom), 2014, 160, 1357-1368.	0.7	6
45	Biovalorization of cheese whey and molasses wastes to galactosidases by recombinant yeasts. , 2020, , 149-161.		6
46	Sequence analysis of a 10 kb DNA fragment from yeast chromosome VII reveals a novel member of the dnaJ family. , 1996, 12, 145-148.		4
47	Crystallization and preliminary X-ray diffraction data of β-galactosidase from <i>Aspergillus niger</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1529-1531.	0.4	4
48	Heat-Loving Î ² -Galactosidases from Cultured and Uncultured Microorganisms. Current Protein and Peptide Science, 2018, 19, 1224-1234.	0.7	4
49	Characterization of a novel thermophilic metagenomic GH5 endoglucanase heterologously expressed in Escherichia coli and Saccharomyces cerevisiae. , 2022, 15, .		4
50	Comparative transcriptome analysis of yeast strains carrying slt2, rlm1, and pop2 deletions. Genome, 2011, 54, 99-109.	0.9	3
51	Advances of Functional Metagenomics in Harnessing Thermozymes. , 2018, , 289-307.		3
52	The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Molecular Microbiology, 2002, 45, 265-265.	1.2	2
53	Growth phase-dependent expression of Kluyveromyces lactis genes and involvement of 3′-UTR elements. Process Biochemistry, 2008, 43, 1153-1157	1.8	2
54	Crystallization and preliminary X-ray diffraction data of α-galactosidase from <i>Saccharomyces cerevisiae</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 44-47.	0.7	2

MANUEL BECERRA

0

#	Article	IF	CITATIONS
55	HMGB Proteins from Yeast to Human. Gene Regulation, DNA Repair and Beyond. , 2017, , .		2
56	The HMGB Protein Kllxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules, 2021, 11, 1392.	1.8	2
57	Functional characterization of KIHEM13, a hypoxic gene of Kluyveromyces lactis. Canadian Journal of Microbiology, 2005, 51, 431-431.	0.8	1
58	Two Proteins with Different Functions Are Derived from the <i>KlHEM13</i> Gene. Eukaryotic Cell, 2011, 10, 1331-1339.	3.4	1
59	Bioprospecting for Thermozymes and Characterization of a Novel Lipolytic Thermozyme Belonging to the SGNH/GDSL Family of Hydrolases. International Journal of Molecular Sciences, 2022, 23, 5733.	1.8	1
60	Secretion of a hybrid K. lactis-A. niger \hat{l}^2 -galactosidase. Microbial Cell Factories, 2006, 5, P66.	1.9	0
61	Archaeal Biocommunication in Hot Springs Revealed by Metagenomics. , 2017, , 85-101.		0
62	Hot Springs Thermophilic Microbiomes. , 2021, , 87-105.		0
63	Extremophilic Esterases for Bioprocessing of Lignocellulosic Feedstocks. , 2017, , 205-223.		0

64 UtilizaciÃ³n de screencasts para un aprendizaje activo. , 0, , 15-24.