Jiquan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618718/publications.pdf Version: 2024-02-01

ΙΙΟΠΑΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Transitionâ€Metalâ€Free Catalyzed Dehydrative Coupling of Quinoline and Isoquinoline Nâ€Oxides with Propargylic Alcohols. Chinese Journal of Chemistry, 2022, 40, 71.	4.9	6
2	Nitrogen-Doped Carbon Supported Co/Ni Bimetallic Catalyst for Selectively Reductive N-Formylation of Nitroso in Guanine Synthesis. Catalysis Letters, 2022, 152, 2812-2822.	2.6	2
3	Hexaphenylbenzene based push-pull fluorophores displaying intriguing polarity-dependent fluorescence behavior, AIE(E) characteristics and mega-large Stokes shifts. Dyes and Pigments, 2022, 198, 110013.	3.7	8
4	Photocatalytic Oxidative Bromination of 2,6-Dichlorotoluene to 2,6-Dichlorobenzyl Bromide in a Microchannel Reactor. ACS Omega, 2022, 7, 4624-4629.	3.5	0
5	Primary Amination of Ar ₂ P(O)–H with (NH ₄) ₂ CO ₃ as an Ammonia Source under Simple and Mild Conditions and Its Extension to the Construction of Various P–N or P–O Bonds. Journal of Organic Chemistry, 2022, 87, 3254-3264.	3.2	10
6	Visible-Light-Induced Oxyalkylation of 1,2,4-Triazine-3,5(2 <i>H</i> , 4 <i>H</i>)-diones with Ethers <i>via</i> Oxidative Cross-Dehydrogenative Coupling. Journal of Organic Chemistry, 2022, 87, 8551-8561.	3.2	8
7	The Crossâ€Dehydrogenative Coupling Reaction of βâ€Ketoesters with Quinoxalinâ€2(1 H)â€ones. European Journal of Organic Chemistry, 2021, 2021, 2126-2130.	2.4	5
8	Synthesis of Tetracyclic Indolines through Palladium atalyzed Asymmetric Dearomative reaction of Aryl Iodides. ChemistrySelect, 2021, 6, 4719-4724.	1.5	11
9	Palladium-catalyzed intramolecular tandem dearomatization of indoles for the synthesis of tetracyclic indolines. Arabian Journal of Chemistry, 2021, 14, 103155.	4.9	8
10	Visible-Light-Induced C(sp ²)–C(sp ³) Cross-Dehydrogenative-Coupling Reaction of <i>N</i> -Heterocycles with <i>N</i> -Alkyl- <i>N</i> -methylanilines under Mild Conditions. Journal of Organic Chemistry, 2021, 86, 11723-11735.	3.2	7
11	Palladium-catalyzed intramolecular diastereoselective dearomatization reaction of indoles with <i>N</i> -tosylhydrazones. Organic Chemistry Frontiers, 2021, 8, 5895-5901.	4.5	12
12	Hydrogenation of Aliphatic Nitriles to Primary Amines over a Bimetallic Catalyst Ni25.38Co18.21/MgO–0.75Al2O3 Under Atmospheric Pressure. Catalysis Letters, 2021, 151, 2784-2794.	2.6	4
13	Palladium-Catalyzed Asymmetric Intramolecular Dearomative Heck Annulation of Aryl Halides to Furnish Indolines. Journal of Organic Chemistry, 2021, 86, 14640-14651.	3.2	19
14	Synthesis of N-unsubstituted cyclic imides from anhydride with urea in deep eutectic solvent (DES) choline chloride/urea. Chemical Papers, 2020, 74, 1351-1357.	2.2	2
15	Synthesis of 1,6-Dihydropyridine-3-carbonitrile Derivatives <i>via</i> Lewis Acid-Catalyzed Annulation of Propargylic Alcohols with (<i>E</i>)-3-Amino-3-phenylacrylonitriles. Journal of Organic Chemistry, 2020, 85, 9863-9875.	3.2	8
16	Simple 9,10-dihydrophenanthrene based hole-transporting materials for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 402, 126298.	12.7	12
17	The C3-H Bond Functionalization of Quinoxalin-2(1H)-Ones With Hypervalent Iodine(III) Reagents. Frontiers in Chemistry, 2020, 8, 582.	3.6	25
18	Direct Introduction of Sulfonamide Groups into Quinoxalinâ€2(1 H)â€ones by Cuâ€Catalyzed C3â€H Functionalization. Chemistry - an Asian Journal, 2020, 15, 3365-3369.	3.3	11

JIQUAN ZHAO

#	Article	IF	CITATIONS
19	Catalytic Oxidation of <i>o</i> -Chlorotoluene with Oxygen to <i>o</i> -Chlorobenzaldehyde in a Microchannel Reactor. Organic Process Research and Development, 2020, 24, 2034-2042.	2.7	5
20	Deep eutectic solvent promoted one-pot synthesis of nitriles from alcohols. Journal of Chemical Sciences, 2020, 132, 1.	1.5	2
21	Asymmetric Epoxidation of α,βâ€Unsaturated Ketones Catalyzed by Chiral Iron Complexes of (R,R)â€3,4â€Diaminopyrrolidine Derived N4â€Ligands with Camphorsulfonyl Sidearms. Asian Journal of Organic Chemistry, 2020, 9, 616-621.	2.7	4
22	Synthesis of 1 <i>H</i> â€Pyrrolo[1,2â€ <i>a</i>]indoles <i>via</i> Lewis Acidâ€Catalyzed Annulation of Propargylic Alcohols with 2â€Ethynylanilines. Advanced Synthesis and Catalysis, 2020, 362, 1399-1404.	4.3	10
23	A one-pot synthesis of benzimidazoles via aerobic oxidative condensation of benzyl alcohols with o-phenylenediamines catalyzed by [MIMPs]+Cl-/NaNO2/TEMPO. Journal of Chemical Research, 2020, 44, 557-565.	1.3	8
24	Direct C3 Alkoxylation of Quinoxalin-2(1 <i>H</i>)-ones with Alcohols via Cross-Dehydrogenative Coupling under Catalyst-Free Conditions. Journal of Organic Chemistry, 2019, 84, 11417-11424.	3.2	62
25	Cobalt nanoparticles anchoring on nitrogen doped carbon with excellent performances for transfer hydrogenation of nitrocompounds to primary amines and N-substituted formamides with formic acid. Catalysis Communications, 2019, 129, 105747.	3.3	26
26	Nitrogen doped carbon supported iron catalysts for highly selective production of 4,4′-diamino-2,2′-stilbenedisulfonic acid. Catalysis Communications, 2019, 132, 105822.	3.3	3
27	A Catalystâ€Free Minisciâ€Type Reaction: the C–H Alkylation of Quinoxalinones with Sodium Alkylsulfinates and Phenyliodine(III) Dicarboxylates. European Journal of Organic Chemistry, 2019, 2019, 6935-6944.	2.4	28
28	Direct C(<i>sp</i> ²)â^'H Amination to Synthesize Primary 3â€aminoquinoxalinâ€2(1 <i>H</i>)â€on under Simple and Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 1662-1667.	.es 4.3	65
29	Dicyanovinyl substituted push–pull chromophores: effects of central Cî€C/phenyl spacers, crystal structures and application in hydrazine sensing. Physical Chemistry Chemical Physics, 2019, 21, 3218-3226.	2.8	14
30	Copperâ€Catalyzed C3â^'H Difluoroacetylation of Quinoxalinones with Ethyl Bromodifluoroacetate. Advanced Synthesis and Catalysis, 2019, 361, 2354-2359.	4.3	75
31	Hydrogen generation from hydrazine catalyzed by a Ni1-(CeO1.8)0.5/carbon-nanotubes catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 153-165.	1.7	1
32	Combination of CuBr2 and multi-functional ligand bearing a bidentate nitrogen unit, a phenol group and a TEMPO moiety as catalyst for the aerobic oxidation of primary alcohols. Arabian Journal of Chemistry, 2019, 12, 1569-1575.	4.9	1
33	Continuous two-step catalytic conversion of glycerol to pyridine bases in high yield. Catalysis Today, 2019, 319, 220-228.	4.4	8
34	Ru/UiO-66 Catalyst for the Reduction of Nitroarenes and Tandem Reaction of Alcohol Oxidation/Knoevenagel Condensation. ACS Omega, 2018, 3, 4199-4212.	3.5	99
35	Catalyst-free reductive amination of levulinic acid to N-substituted pyrrolidinones with formic acid in continuous-flow microreactor. Journal of Flow Chemistry, 2018, 8, 35-43.	1.9	15
36	Synthesis of Nitriles from Allyl Alcohol Derived from Glycerol over a Bimetallic Catalyst Zn ₃₀ Ru _{1.0} /γ-Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 4553-4561.	3.7	9

JIQUAN ZHAO

#	Article	IF	CITATIONS
37	[3+2] Cyclization of Azidotrimethylsilane with Quinoxalinâ€2(1 <i>H</i>)â€Ones to Synthesize Tetrazolo[1,5â€ <i>a</i>]quinoxalinâ€4(5 <i>H</i>)â€Ones. Advanced Synthesis and Catalysis, 2018, 360, 4509-4514.	4.3	46
38	Aerobic oxidative conversion of benzylic alcohols with ammonia to nitriles catalyzed by CuCl/TEMPO/PIC. Chemical Papers, 2018, 72, 2679-2685.	2.2	8
39	Ru(OH)x supported on polyethylenimine modified magnetic nanoparticles coated with silica as catalyst for one-pot tandem aerobic oxidation/Knoevenagel condensation of alcohols and active methylene compounds. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 789-806.	1.7	16
40	Direct Câ^'H Trifluoromethylation of Quinoxalinâ€⊋(1 <i>H</i>)â€ones under Transitionâ€Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2018, 360, 3969-3977.	4.3	108
41	Conversion of levulinic acid to N-substituted pyrrolidinones over a nonnoble bimetallic catalyst Cu15Pr3/Al2O3. Catalysis Communications, 2018, 116, 85-90.	3.3	29
42	Synthesis of βâ€Trifluoromethylated Alkyl Azides <i>via</i> a Manganeseâ€Catalyzed Trifluoromethylazidation of Alkenes with CF ₃ SO ₂ Na and TMSN ₃ . Advanced Synthesis and Catalysis, 2018, 360, 2659-2667.	4.3	42
43	Oxidation of alkanes and secondary alcohols to ketones with <i>tert</i> â€butyl hydroperoxide catalyzed by a waterâ€soluble ruthenium complex under solventâ€free conditions. Applied Organometallic Chemistry, 2017, 31, e3709.	3.5	11
44	Copper-Promoted Intramolecular Aminotrifluoromethylation of Alkenes with Langlois Reagent as the Trifluoromethyl Source. Synlett, 2017, 28, 962-965.	1.8	19
45	Enhanced selectivity in the conversion of glycerol to pyridine bases over HZSM-5/11 intergrowth zeolite. RSC Advances, 2017, 7, 23647-23656.	3.6	14
46	Activated Carbon Supported Ruthenium Nanoparticles Catalyzed Synthesis of Imines from Aerobic Oxidation of Alcohols with Amines. Catalysis Letters, 2017, 147, 20-28.	2.6	21
47	Synthesis of a polymer–ruthenium complex Ru(pbbp)(pydic) and its catalysis in the oxidation of secondary alcohols with TBHP as oxidant. Transition Metal Chemistry, 2017, 42, 105-116.	1.4	9
48	Synthesis of an oligomer ruthenium complex and its catalysis in the oxidation of alcohols. RSC Advances, 2017, 7, 47261-47270.	3.6	4
49	Cobalt-Catalyzed Trifluoromethylation–Peroxidation of Unactivated Alkenes with Sodium Trifluoromethanesulfinate and Hydroperoxide. Organic Letters, 2017, 19, 5260-5263.	4.6	66
50	Aerobic oxidation of amines to imines catalyzed by a ruthenium complex under solvent-free conditions. Catalysis Communications, 2016, 81, 10-13.	3.3	24
51	Conversion of benzyl alcohol to benzonitrile over a Cu 10.3 /SiO 2 catalyst. Applied Catalysis A: General, 2016, 522, 45-53.	4.3	15
52	Immobilization of Ru(terpyridine)(2,6â€pyridinedicarboxylate) onto MCMâ€41 and its catalysis in the oxidation of alcohols. Applied Organometallic Chemistry, 2016, 30, 645-652.	3.5	10
53	A Recyclable Organocatalyst for Asymmetric Michael Addition. Catalysis Letters, 2016, 146, 587-595.	2.6	4
54	A study on the conversion of glycerol to pyridine bases over Cu/HZSM-5 catalysts. Green Chemistry, 2016, 18, 3139-3151.	9.0	36

Jiquan Zhao

#	Article	IF	CITATIONS
55	Synthesis, single crystal structure and efficient catalysis for alcohol oxidation of a novel Ru(II) complex with both a N,N,N-tridentate ligand and a pyridinedicarboxylate. Polyhedron, 2016, 105, 170-177.	2.2	16
56	Solvent-Free Aerobic Oxidation of Alcohols to Nitriles Catalyzed by Copper Iodide in Combination with a Quaternary Ammonium Modified TEMPO. Catalysis Letters, 2016, 146, 220-228.	2.6	3
57	Brönsted acid surfactant-combined dicationic ionic liquids as green catalysts for biodiesel synthesis from free fatty acids and alcohols. Chinese Journal of Catalysis, 2015, 36, 982-986.	14.0	14
58	Aerobic oxidation of p-cresols to 4-hydroxy benzaldehydes catalyzed by cobaltous chloride/NHPI/salen-Cu(II) catalytic system. Research on Chemical Intermediates, 2015, 41, 3855-3863.	2.7	6
59	Geminal BrÃ,nsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water. International Journal of Molecular Sciences, 2014, 15, 8656-8666.	4.1	23
60	Oxidative Kinetic Resolution of Secondary Alcohols with Salen–Mn(III)/NBS/NaClO System. Catalysis Letters, 2014, 144, 1797-1802.	2.6	7
61	Study on the conversion of glycerol to nitriles over a Fe19.2K0.2/γ-Al2O3 catalyst. Journal of Catalysis, 2014, 313, 92-103.	6.2	20
62	Deep eutectic solvent supported TEMPO for oxidation of alcohols. RSC Advances, 2014, 4, 40161-40169.	3.6	33
63	Liquid-phase oxidation of 2-methoxy-p-cresol to vanillin with oxygen catalyzed by a combination of CoCl2 and N-hydroxyphthalimide. Research on Chemical Intermediates, 2014, 40, 1303-1311.	2.7	6
64	Amination of allyl alcohol to propionitrile over a Zn30Cr4.5/γ-Al2O3 bimetallic catalyst via coupled dehydrogenation–hydrogenation reactions. Applied Catalysis A: General, 2013, 467, 154-162.	4.3	12
65	Synthesis of phenylacetonitrile by amination of styrene oxide catalyzed by a bimetallic catalyst Zn30.1Cr4.3/γ-Al2O3. RSC Advances, 2012, 2, 6590.	3.6	11
66	Study on Alumina-Supported Cobalt–Nickel Oxide Catalyst for Synthesis of Acetonitrile from Ethanol. Catalysis Letters, 2011, 141, 168-177.	2.6	29
67	Synthesis of diâ€nitrogen Schiff base complexes of methyltrioxorhenium(VII) and their application in epoxidation with aqueous hydrogen peroxide as oxidant. Applied Organometallic Chemistry, 2011, 25, 54-60.	3.5	22
68	Asymmetric epoxidation of unfunctionalized alkenes catalyzed by sugar moiety-modified chiral salen–Mn(III) complexes. Carbohydrate Research, 2009, 344, 61-66.	2.3	15
69	Amination of ethanol to acetonitrile over Ni-doped Co/γ-Al2O3 catalyst. Catalysis Communications, 2009, 10, 1454-1458.	3.3	45
70	Preparation of MCM-41 Supported Salen Vanadium Complex and its Catalysis for the Oxidation of Cyclohexane with H2O2 as an Oxidant. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 441-447.	3.7	20
71	Preparation of MCM-41 Supported Heterogenized Chiral Salen Mn (III) Complex and the Catalytic Activity in the Asymmetric Epoxidation. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 653-659.	3.7	9
72	Preparation of MCM-41-supported chiral Salen Mn (III) catalysts and their catalytic properties in the asymmetric epoxidation of olefins. Science Bulletin, 2007, 52, 2337-2344.	1.7	8

#	Article	IF	CITATIONS
73	Cobalt-catalyzed alternating and nonalternating copolymerization of carbon monoxide with aziridine. Journal of Polymer Science Part A, 2003, 41, 376-385.	2.3	26
74	Epoxidation of Olefins with Molecular Oxygen Over Layered Double Hydroxide Catalyst in the Presence of Benzaldehyde. Catalysis Letters, 0, , 1.	2.6	0