
Alex B Mcbratney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618555/publications.pdf Version: 2024-02-01

ALEY R MCRDATNEY

#	Article	IF	CITATIONS
1	To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library. Geoderma, 2022, 406, 115501.	2.3	25
2	Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology, 2022, 169, 104184.	2.1	32
3	Soil bacterial depth distribution controlled by soil orders and soil forms. Soil Ecology Letters, 2022, 4, 57-68.	2.4	10
4	The effect of social and personal norms on stated preferences for multiple soil functions: evidence from Australia and Italy. Australian Journal of Agricultural and Resource Economics, 2022, 66, 335-362.	1.3	6
5	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	6.6	52
6	Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions. Soil Security, 2022, 6, 100043.	1.2	35
7	Mapping citizens' attitudes towards soil ecosystem services: A case study from New South Wales, Australia Soil Security, 2022, 7, 100063.	1.2	2
8	Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability, 2022, 14, 5815.	1.6	24
9	Current NPP cannot predict future soil organic carbon sequestration potential. Comment on "Photosynthetic limits on carbon sequestration in croplands― Geoderma, 2022, 424, 115975.	2.3	13
10	Predicting soil properties in 3D: Should depth be a covariate?. Geoderma, 2021, 383, 114794.	2.3	36
11	Hypotheses, machine learning and soil mapping. Geoderma, 2021, 383, 114725.	2.3	23
12	Perspectives on dataâ€driven soil research. European Journal of Soil Science, 2021, 72, 1675-1689.	1.8	29
13	Legacy data-based national-scale digital mapping of key soil properties in India. Geoderma, 2021, 381, 114684.	2.3	41
14	Creating a soil parent material map digitally using a combination of interpretation and statistical techniques. Soil Research, 2021, 59, 684-698.	0.6	5
15	Estimating Soil Properties and Classes from Spectra. Progress in Soil Science, 2021, , 165-214.	0.4	0
16	Selection of the Samples for Laboratory Analysis. Progress in Soil Science, 2021, , 143-164.	0.4	0
17	Spectral Transfer and Transformation. Progress in Soil Science, 2021, , 215-247.	0.4	0
18	Soil Spectral Inference with R. Progress in Soil Science, 2021, , .	0.4	19

#	Article	IF	CITATIONS
19	Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape. Soil, 2021, 7, 33-46.	2.2	10
20	Greater, but not necessarily better: The influence of biochar on soil hydraulic properties. European Journal of Soil Science, 2021, 72, 2033-2048.	1.8	11
21	Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 2021, 24, e00359.	0.9	29
22	Identifying soil provenance based on portable X-ray fluorescence measurements using similarity and inverse-mapping approaches – A case in the Lower Hunter Valley, Australia. Geoderma Regional, 2021, 25, e00368.	0.9	5
23	Spectral information related to soil slaking: An example from Australia. Geoderma Regional, 2021, 25, e00386.	0.9	Ο
24	Digital soil science and beyond. Soil Science Society of America Journal, 2021, 85, 1313-1331.	1.2	11
25	Paper self-citation rates of leading soil science journals. Catena, 2021, 202, 105232.	2.2	2
26	A modelling framework for pedogenon mapping. Geoderma, 2021, 393, 115012.	2.3	11
27	Application of response surface methodology for optimization of wheat flour milling process. Cereal Chemistry, 2021, 98, 1215-1226.	1.1	8
28	Attitudes and Preferences towards Soil-Based Ecosystem Services: How Do They Vary across Space?. Sustainability, 2021, 13, 8722.	1.6	5
29	Boosting soil citizen-science using Tea Bag Index method towards soil security in Australia. Soil Security, 2021, 5, 100016.	1.2	3
30	A framework to assess changes in soil condition and capability over large areas. Soil Security, 2021, 4, 100011.	1.2	9
31	Ten challenges for the future of pedometrics. Geoderma, 2021, 401, 115155.	2.3	35
32	Exploratory Soil Spectral Analysis. Progress in Soil Science, 2021, , 81-113.	0.4	1
33	Overview of Pedometrics. , 2021, , .		5
34	Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma, 2020, 360, 114033.	2.3	41
35	Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Science of the Total Environment, 2020, 702, 134723.	3.9	71
36	Operationalising digital soil mapping – Lessons from Australia. Geoderma Regional, 2020, 23, e00335.	0.9	21

#	Article	IF	CITATIONS
37	Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 2020, 210, 103359.	4.0	215
38	An in situ method for quantifying tillage effects on soil structure using multistripe laser triangulation. Geoderma, 2020, 380, 114642.	2.3	7
39	History and interpretation of early soil and organic matter investigations in Deli, Sumatra, Indonesia. Catena, 2020, 195, 104909.	2.2	5
40	Precocious 19th century soil carbon science. Geoderma Regional, 2020, 22, e00306.	0.9	23
41	AÂnew model for intra- and inter-institutional soil data sharing. Soil, 2020, 6, 89-94.	2.2	6
42	Machine learning and soil sciences: a review aided by machine learning tools. Soil, 2020, 6, 35-52.	2.2	195
43	Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Regional, 2020, 20, e00255.	0.9	50
44	Evaluating an adaptive sampling algorithm to assist soil survey in New South Wales, Australia. Geoderma Regional, 2020, 21, e00284.	0.9	0
45	Editorial: Widening the disciplinary study of soil. Soil Security, 2020, 1, 100003.	1.2	5
46	Game theory interpretation of digital soil mapping convolutional neural networks. Soil, 2020, 6, 389-397.	2.2	64
47	Understanding soil biodiversity using two orthogonal 1000km transects across New South Wales, Australia. Geoderma, 2019, 354, 113860.	2.3	10
48	Soil Security for Australia. Sustainability, 2019, 11, 3416.	1.6	31
49	Checks and Mass Balances for In Situ Quantification of Mineral Composition using Proximal Soil Sensors. Soil Science Society of America Journal, 2019, 83, 1253-1262.	1.2	1
50	On Soil Capability, Capacity, and Condition. Sustainability, 2019, 11, 3350.	1.6	27
51	Online machine learning for collaborative biophysical modelling. Environmental Modelling and Software, 2019, 122, 104548.	1.9	6
52	The feasibility of predicting the spatial pattern of soil particle-size distribution using a pedogenesis model. Geoderma, 2019, 341, 195-205.	2.3	24
53	Pedology and digital soil mapping (DSM). European Journal of Soil Science, 2019, 70, 216-235.	1.8	136
54	Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma, 2019, 340, 279-288.	2.3	86

#	Article	IF	CITATIONS
55	Towards meaningful geographical indications: Validating terroirs on a 200â€ ⁻ km2 scale in Australia's lower Hunter Valley. Geoderma Regional, 2019, 16, e00209.	0.9	9
56	Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma, 2019, 352, 251-267.	2.3	262
57	Digital mapping of peatlands – A critical review. Earth-Science Reviews, 2019, 196, 102870.	4.0	102
58	Using deep learning for digital soil mapping. Soil, 2019, 5, 79-89.	2.2	144
59	POLARIS Soil Properties: 30â€m Probabilistic Maps of Soil Properties Over the Contiguous United States. Water Resources Research, 2019, 55, 2916-2938.	1.7	77
60	Spatial changes in soil chemical properties in an agricultural zone in southeastern China due to land consolidation. Soil and Tillage Research, 2019, 187, 152-160.	2.6	23
61	Retrospective monitoring of the spatial variability of crystalline iron in soils of the east shore of Urmia Lake, Iran using remotely sensed data and digital maps. Geoderma, 2019, 337, 1196-1207.	2.3	17
62	Pedometrics timeline. Geoderma, 2019, 338, 568-575.	2.3	26
63	Using deep learning to predict soil properties from regional spectral data. Geoderma Regional, 2019, 16, e00198.	0.9	176
64	Evaluating the spatial and vertical distribution of agriculturally important nutrients — nitrogen, phosphorous and boron — in North West Iran. Catena, 2019, 173, 71-82.	2.2	35
65	Auditing on-farm soil carbon stocks using downscaled national mapping products: Examples from Australia and New Zealand. Geoderma Regional, 2018, 13, 1-14.	0.9	5
66	Comparisons between USDA soil taxonomy and the Australian Soil Classification system II: Comparison of order, suborder and great group taxa. Geoderma, 2018, 322, 48-55.	2.3	12
67	Digital Mapping of Soil Classes and Continuous Soil Properties. Progress in Soil Science, 2018, , 373-413.	0.4	12
68	One-, Two- and Three-Dimensional Pedogenetic Models. Progress in Soil Science, 2018, , 555-593.	0.4	1
69	Pedometric Treatment of Soil Attributes. Progress in Soil Science, 2018, , 115-153.	0.4	2
70	Pedotransfer Functions and Soil Inference Systems. Progress in Soil Science, 2018, , 195-220.	0.4	6
71	Soil Material Classes. Progress in Soil Science, 2018, , 223-264.	0.4	2
72	Soil Profile Classes. Progress in Soil Science, 2018, , 265-288.	0.4	1

#	Article	IF	CITATIONS
73	Rejoinder to the comment on: B. Minasny & A.B. McBratney. 2018. Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 2018, 69, 155-157.	1.8	10
74	A preliminary spatial quantification of the soil security dimensions for Tasmania. Geoderma, 2018, 322, 184-200.	2.3	24
75	Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions. Science of the Total Environment, 2018, 631-632, 377-389.	3.9	19
76	A nomenclature algorithm for a potentially global soil taxonomy. Geoderma, 2018, 322, 56-70.	2.3	7
77	Rejoinder to Comments on Minasny et al., 2017 Soil carbon 4 per mille Geoderma 292, 59–86. Geoderma, 2018, 309, 124-129.	2.3	34
78	Spatial variability of Australian soil texture: A multiscale analysis. Geoderma, 2018, 309, 60-74.	2.3	22
79	The location- and scale- specific correlation between temperature and soil carbon sequestration across the globe. Science of the Total Environment, 2018, 615, 540-548.	3.9	31
80	Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 2018, 69, 39-47.	1.8	315
81	Soil temperature increase in eastern Australia for the past 50 years. Geoderma, 2018, 313, 241-249.	2.3	19
82	Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma, 2018, 313, 25-40.	2.3	96
83	A preliminary soil security assessment of agricultural land in middleâ€eastern China. Soil Use and Management, 2018, 34, 584-596.	2.6	9
84	The carbon sequestration potential of terrestrial ecosystems. Journal of Soils and Water Conservation, 2018, 73, 145A-152A.	0.8	180
85	Allocating soil profile descriptions to a novel comprehensive soil classification system. Geoderma, 2018, 329, 54-60.	2.3	4
86	Mapping the transition from pre-European settlement to contemporary soil conditions in the Lower Hunter Valley, Australia. Geoderma, 2018, 329, 27-42.	2.3	19
87	Soil Water Extraction Monitored Per Plot Across a Field Experiment Using Repeated Electromagnetic Induction Surveys. Soil Systems, 2018, 2, 11.	1.0	11
88	Scope of Pedometrics. Progress in Soil Science, 2018, , 7-39.	0.4	3
89	Pedodiversity. Progress in Soil Science, 2018, , 491-519.	0.4	1
90	Clorpt Functions. Progress in Soil Science, 2018, , 549-554.	0.4	2

#	Article	IF	CITATIONS
91	Variograms of Soil Properties for Agricultural and Environmental Applications. Progress in Soil Science, 2018, , 623-667.	0.4	4
92	Farm-Scale Soil Carbon Auditing. Progress in Soil Science, 2018, , 693-720.	0.4	1
93	Soil Properties Drive Microbial Community Structure in a Large Scale Transect in South Eastern Australia. Scientific Reports, 2018, 8, 11725.	1.6	155
94	Description and spatial inference of soil drainage using matrix soil colours in the Lower Hunter Valley, New South Wales, Australia. PeerJ, 2018, 6, e4659.	0.9	10
95	Soil carbon 4 per mille. Geoderma, 2017, 292, 59-86.	2.3	1,279
96	Chile and the Chilean soil grid: A contribution to GlobalSoilMap. Geoderma Regional, 2017, 9, 17-28.	0.9	80
97	Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ, 2017, 14, 1-19.	1.4	102
98	3D soil water nowcasting using electromagnetic conductivity imaging and the ensemble Kalman filter. Journal of Hydrology, 2017, 549, 62-78.	2.3	10
99	Exploratory Assessment of Aerial Gamma Radiometrics across the Conterminous United States. Soil Science Society of America Journal, 2017, 81, 94-108.	1.2	2
100	Quantifying and predicting spatio-temporal variability of soil CH 4 and N 2 O fluxes from a seemingly homogeneous Australian agricultural field. Agriculture, Ecosystems and Environment, 2017, 240, 182-193.	2.5	38
101	Temperature-dependent hysteresis effects on EM induction instruments: An example of single-frequency multi-coil array instruments. Computers and Electronics in Agriculture, 2017, 132, 76-85.	3.7	13
102	Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 2017, 290, 91-99.	2.3	84
103	Framing a modern context of soil science learning and teaching. Geoderma, 2017, 289, 117-123.	2.3	22
104	Creating a novel comprehensive soil classification system by sequentially adding taxa from existing systems. Geoderma Regional, 2017, 11, 123-140.	0.9	10
105	Unravelling scale- and location-specific variations in soil properties using the 2-dimensional empirical mode decomposition. Geoderma, 2017, 307, 139-149.	2.3	23
106	Comparison of regression methods for spatial downscaling of soil organic carbon stocks maps. Computers and Electronics in Agriculture, 2017, 142, 91-100.	3.7	15
107	Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: Data harmonization, calculation of taxonomic distance and inter-taxa variation. Geoderma, 2017, 307, 198-209.	2.3	26
108	Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping. Science of the Total Environment, 2017, 609, 621-632.	3.9	46

#	Article	IF	CITATIONS
109	General Concepts of Valuing and Caring for Soil. Progress in Soil Science, 2017, , 101-108.	0.4	4
110	Using R for Digital Soil Mapping. Progress in Soil Science, 2017, , .	0.4	58
111	Soil Security: A Rationale. Progress in Soil Science, 2017, , 3-14.	0.4	11
112	Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter. Geoderma, 2017, 285, 76-93.	2.3	47
113	Digital Soil Mapping. Progress in Soil Science, 2017, , 1-5.	0.4	6
114	Digital Soil Assessments. Progress in Soil Science, 2017, , 245-260.	0.4	2
115	R Literacy for Digital Soil Mapping. Progress in Soil Science, 2017, , 7-79.	0.4	0
116	Categorical Soil Attribute Modeling and Mapping. Progress in Soil Science, 2017, , 151-167.	0.4	3
117	Some Methods for the Quantification of Prediction Uncertainties for Digital Soil Mapping. Progress in Soil Science, 2017, , 169-219.	0.4	5
118	Combining Continuous and Categorical Modeling: Digital Soil Mapping of Soil Horizons and Their Depths. Progress in Soil Science, 2017, , 231-244.	0.4	0
119	Measuring functional pedodiversity using spectroscopic information. Catena, 2017, 152, 103-114.	2.2	16
120	Quantifying Capability: GlobalSoilMap. Progress in Soil Science, 2017, , 77-85.	0.4	0
121	Reply to "Comment on "Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review―by Horta et al― Geoderma, 2016, 271, 256-257.	2.3	4
122	Measuring and Modelling Soil Depth Functions. Progress in Soil Science, 2016, , 225-240.	0.4	18
123	In Situ Analysis of Soil Mineral Composition Through Conjoint Use of Visible, Near-Infrared and X-Ray Fluorescence Spectroscopy. Progress in Soil Science, 2016, , 51-62.	0.4	5
124	What Is Digital Soil Morphometrics and Where Might It Be Going?. Progress in Soil Science, 2016, , 1-15.	0.4	1
125	The Effect of Soil Moisture and Texture on Fe Concentration Using Portable X-Ray Fluorescence Spectrometers. Progress in Soil Science, 2016, , 63-71.	0.4	14
126	Synergistic Use of Visâ€NIR, MIR, and XRF Spectroscopy for the Determination of Soil Geochemistry. Soil Science Society of America Journal, 2016, 80, 888-899.	1.2	72

#	Article	IF	CITATIONS
127	An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma, 2016, 279, 31-44.	2.3	124
128	The history of using rainfall data to improve production in the grain industry in Australia—from Goyder to ENSO. Crop and Pasture Science, 2016, 67, 467.	0.7	4
129	Soil slaking assessment using image recognition. Soil and Tillage Research, 2016, 163, 119-129.	2.6	53
130	Long-term variability of the leading seasonal modes of rainfall in south-eastern Australia. Weather and Climate Extremes, 2016, 13, 1-14.	1.6	34
131	Spatiotemporal monthly rainfall forecasts for south-eastern and eastern Australia using climatic indices. Theoretical and Applied Climatology, 2016, 124, 1045-1063.	1.3	14
132	Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena, 2016, 139, 220-231.	2.2	138
133	Radical soil management for Australia: A rejuvenation process. Geoderma Regional, 2016, 7, 132-136.	0.9	6
134	Comparing regression-based digital soil mapping and multiple-point geostatistics for the spatial extrapolation of soil data. Geoderma, 2016, 262, 243-253.	2.3	64
135	Testing the pedometric evaluation of taxonomic units on soil taxonomy — A step in advancing towards a universal soil classification system. Geoderma, 2016, 264, 340-349.	2.3	20
136	Digital soil mapping: A brief history and some lessons. Geoderma, 2016, 264, 301-311.	2.3	403
137	Fuzzy clustering of Vis–NIR spectra for the objective recognition of soil morphological horizons in soil profiles. Geoderma, 2016, 263, 244-253.	2.3	45
138	Soil organic carbon across scales. Global Change Biology, 2015, 21, 3561-3574.	4.2	114
139	Eighty-metre resolution 3D soil-attribute maps for Tasmania, Australia. Soil Research, 2015, 53, 932.	0.6	33
140	Taking account of uncertainties in digital land suitability assessment. PeerJ, 2015, 3, e1366.	0.9	15
141	Digital soil assessment of agricultural suitability, versatility and capital in Tasmania, Australia. Geoderma Regional, 2015, 6, 7-21.	0.9	52
142	Carbon Determination System for Whole Soil Cores. Communications in Soil Science and Plant Analysis, 2015, 46, 221-234.	0.6	3
143	Using Google's cloud-based platform for digital soil mapping. Computers and Geosciences, 2015, 83, 80-88.	2.0	71
144	Resolving the integral connection between pedogenesis and landscape evolution. Earth-Science Reviews, 2015, 150, 102-120.	4.0	76

#	Article	IF	CITATIONS
145	Optimizing Stratification and Allocation for Design-Based Estimation of Spatial Means Using Predictions with Error. Journal of Survey Statistics and Methodology, 2015, 3, 19-42.	0.5	20
146	Securing our soil. Soil Science and Plant Nutrition, 2015, 61, 587-591.	0.8	20
147	Global soil organic carbon assessment. Global Food Security, 2015, 6, 9-16.	4.0	176
148	Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Regional, 2015, 4, 1-10.	0.9	38
149	Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma, 2015, 237-238, 190-198.	2.3	44
150	A model for the identification of terrons in the Lower Hunter Valley, Australia. Geoderma Regional, 2014, 1, 31-47.	0.9	28
151	A Novel Method for Measurement of Carbon on Whole Soil Cores. , 2014, , 69-76.		0
152	End members, end points and extragrades in numerical soil classification. Geoderma, 2014, 226-227, 365-375.	2.3	17
153	Challenges for Soil Organic Carbon Research. , 2014, , 3-16.		28
154	Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania, Australia. Soil Research, 2014, 52, 107.	0.6	27
155	How fast does soil grow?. Geoderma, 2014, 216, 48-61.	2.3	91
156	Disaggregating and harmonising soil map units through resampled classification trees. Geoderma, 2014, 214-215, 91-100.	2.3	122
157	High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 2014, 213, 296-311.	2.3	139
158	Using model averaging to combine soil property rasters from legacy soil maps and from point data. Geoderma, 2014, 232-234, 34-44.	2.3	113
159	The dimensions of soil security. Geoderma, 2014, 213, 203-213.	2.3	560
160	Is Percent â€~Projected Natural Vegetation Soil Carbon' a Useful Indicator of Soil Condition?. , 2014, , 219-227.		4
161	Quantitatively Predicting Soil Carbon Across Landscapes. , 2014, , 45-57.		2
162	An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture, 2013, 14, 376-391.	3.1	31

#	Article	IF	CITATIONS
163	Spacebender. Spatial Statistics, 2013, 4, 57-67.	0.9	13
164	Digital Mapping of Soil Carbon. Advances in Agronomy, 2013, , 1-47.	2.4	296
165	Optimized multi-phase sampling for soil remediation surveys. Spatial Statistics, 2013, 4, 1-13.	0.9	20
166	Framing soils as an actor when dealing with wicked environmental problems. Geoderma, 2013, 200-201, 130-139.	2.3	119
167	Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 2013, 192, 77-85.	2.3	41
168	The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 2013, 164, 80-99.	2.5	1,143
169	A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research F: Earth Surface, 2013, 118, 331-347.	1.0	99
170	Pedometrics Research in the Vadose Zone—Review and Perspectives. Vadose Zone Journal, 2013, 12, 1-20.	1.3	25
171	Using Vis-NIR Spectroscopy for Monitoring Temporal Changes in Soil Organic Carbon. Soil Science, 2013, 178, 389-399.	0.9	15
172	Quantifying processes of pedogenesis using optically stimulated luminescence. European Journal of Soil Science, 2013, 64, 145-160.	1.8	25
173	Soil Security: Solving the Global Soil Crisis. Global Policy, 2013, 4, 434-441.	1.0	219
174	Highâ€Resolution 3â€D Mapping of Soil Texture in Denmark. Soil Science Society of America Journal, 2013, 77, 860-876.	1.2	180
175	Universal Soil Classification System Report from the International Union of Soil Sciences Working Group. Soil Horizons, 2013, 54, 1.	0.3	19
176	Spatial Scaling for Digital Soil Mapping. Soil Science Society of America Journal, 2013, 77, 890-902.	1.2	39
177	Citations and the <i>h</i> index of soil researchers and journals in the Web of Science, Scopus, and Google Scholar. PeerJ, 2013, 1, e183.	0.9	53
178	Soil carbon determination by thermogravimetrics. PeerJ, 2013, 1, e6.	0.9	37
179	A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research F: Earth Surface, 2013, , n/a-n/a.	1.0	0
180	Put soil security on the global agenda. Nature, 2012, 492, 186-186.	13.7	46

#	Article	IF	CITATIONS
181	Using genetic programming to transform from Australian to USDA/FAO soil particle-size classification system. Soil Research, 2012, 50, 443.	0.6	12
182	Evaluation of a local regression kriging approach for mapping apparent electrical conductivity of soil (ECa) at high resolution. Journal of Plant Nutrition and Soil Science, 2012, 175, 212-220.	1.1	11
183	Analysis and prediction of soil properties using local regression-kriging. Geoderma, 2012, 171-172, 16-23.	2.3	73
184	Continuous rice cropping has been sequestering carbon in soils in Java and South Korea for the past 30Âyears. Global Biogeochemical Cycles, 2012, 26, .	1.9	43
185	A general method for downscaling earth resource information. Computers and Geosciences, 2012, 41, 119-125.	2.0	40
186	Necessary meta-data for pedotransfer functions. Geoderma, 2011, 160, 627-629.	2.3	38
187	Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 2011, 160, 614-626.	2.3	132
188	Confronting uncertainty in model-based geostatistics using Markov Chain Monte Carlo simulation. Geoderma, 2011, 163, 150-162.	2.3	57
189	Bottom-up digital soil mapping. II. Soil series classes. Geoderma, 2011, 163, 30-37.	2.3	31
190	Bottom-up digital soil mapping. I. Soil layer classes. Geoderma, 2011, 163, 38-44.	2.3	39
191	Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma, 2011, 167-168, 118-124.	2.3	229
192	Soil Science teaching principles. Geoderma, 2011, 167-168, 9-14.	2.3	59
193	Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 2011, 62, 728-732.	1.8	72
194	Is soil carbon disappearing? The dynamics of soil organic carbon in Java. Global Change Biology, 2011, 17, 1917-1924.	4.2	48
195	Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives. Soil Biology and Biochemistry, 2011, 43, 1398-1410.	4.2	374
196	Comparing temperature correction models for soil electrical conductivity measurement. Precision Agriculture, 2011, 12, 55-66.	3.1	93
197	Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm. Precision Agriculture, 2011, 12, 421-438.	3.1	17
198	Using Additional Criteria for Measuring the Quality of Predictions and Their Uncertainties in a Digital Soil Mapping Framework. Soil Science Society of America Journal, 2011, 75, 1032-1043.	1.2	23

#	Article	IF	CITATIONS
199	Mapping and comparing the distribution of soil carbon under cropping and grazing management practices in Narrabri, north-west New South Wales. Soil Research, 2010, 48, 248.	0.6	27
200	Comment on "Determining soil carbon stock changes: Simple bulk density corrections fail―[Agric. Ecosyst. Environ. 134 (2009) 251–256]. Agriculture, Ecosystems and Environment, 2010, 136, 185-186.	2.5	20
201	Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC - Trends in Analytical Chemistry, 2010, 29, 1073-1081.	5.8	668
202	Estimating Pedotransfer Function Prediction Limits Using Fuzzy <i>k</i> â€Means with Extragrades. Soil Science Society of America Journal, 2010, 74, 1967-1975.	1.2	29
203	Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 2010, 155, 132-139.	2.3	103
204	Individual, country, and journal self-citation in soil science. Geoderma, 2010, 155, 434-438.	2.3	22
205	GlobalSoilMap.net – A New Digital Soil Map of the World. , 2010, , 423-428.		16
206	Digital Soil Map of the World. Science, 2009, 325, 680-681.	6.0	469
207	Modelling how carbon affects soil structure. Geoderma, 2009, 149, 19-26.	2.3	52
208	Using distance metrics to determine the appropriate domain of pedotransfer function predictions. Geoderma, 2009, 149, 421-425.	2.3	27
209	Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma, 2009, 153, 155-162.	2.3	97
210	Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 2009, 154, 138-152.	2.3	365
211	Evaluating near infrared spectroscopy for field prediction of soil properties. Soil Research, 2009, 47, 664.	0.6	39
212	Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2008, 94, 72-79.	1.8	177
213	Using soil knowledge for the evaluation of midâ€infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science, 2008, 59, 960-971.	1.8	70
214	Generation of kth-order random toposequences. Computers and Geosciences, 2008, 34, 479-490.	2.0	12
215	Quantitative models for pedogenesis $\hat{a} \in \hat{A}$ A review. Geoderma, 2008, 144, 140-157.	2.3	171
216	Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, 2008, 146, 403-411.	2.3	458

#	Article	IF	CITATIONS
217	A soil science renaissance. Geoderma, 2008, 148, 123-129.	2.3	167
218	Comparing Spectral Soil Inference Systems and Midâ€Infrared Spectroscopic Predictions of Soil Moisture Retention. Soil Science Society of America Journal, 2008, 72, 1394-1400.	1.2	24
219	Digital Soil Mapping Technologies for Countries with Sparse Data Infrastructures. , 2008, , 15-30.		11
220	Relationships between field texture and particle-size distribution in Australia and their implications. Soil Research, 2007, 45, 428.	0.6	12
221	Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma, 2007, 141, 1-14.	2.3	73
222	Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma, 2007, 140, 324-336.	2.3	182
223	On measuring pedodiversity. Geoderma, 2007, 141, 149-154.	2.3	63
224	Digital soil assessments: Beyond DSM. Geoderma, 2007, 142, 69-79.	2.3	151
225	Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma, 2007, 142, 285-293.	2.3	82
226	Estimating the Water Retention Shape Parameter from Sand and Clay Content. Soil Science Society of America Journal, 2007, 71, 1105-1110.	1.2	53
227	Modelling longâ€ŧerm <i>in situ </i> soil profile evolution: application to the genesis of soil profiles containing stone layers. European Journal of Soil Science, 2007, 58, 1535-1548.	1.8	53
228	Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use and Management, 2007, 23, 437-443.	2.6	136
229	The variance quadtree algorithm: Use for spatial sampling design. Computers and Geosciences, 2007, 33, 383-392.	2.0	62
230	Soil science and the h index. Scientometrics, 2007, 73, 257-264.	1.6	25
231	Prediction and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Research, 2006, 44, 233.	0.6	169
232	Uncertainty analysis for soilâ€ŧerrain models. International Journal of Geographical Information Science, 2006, 20, 117-134.	2.2	40
233	Colour space models for soil science. Geoderma, 2006, 133, 320-337.	2.3	309
234	Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales. Geoderma, 2006, 133, 71-86.	2.3	58

#	Article	IF	CITATIONS
235	Mechanistic soil–landscape modelling as an approach to developing pedogenetic classifications. Geoderma, 2006, 133, 138-149.	2.3	71
236	Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma, 2006, 136, 272-278.	2.3	164
237	Nonlinear mixed effect modelling for improved estimation of water retention and infiltration parameters. Journal of Hydrology, 2006, 330, 748-758.	2.3	16
238	A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 2006, 32, 1378-1388.	2.0	719
239	Chapter 21 Soil Prediction with Spatially Decomposed Environmental Factors. Developments in Soil Science, 2006, 31, 269-278.	0.5	7
240	Chapter 12 Latin Hypercube Sampling as a Tool for Digital Soil Mapping. Developments in Soil Science, 2006, 31, 153-606.	0.5	14
241	Chapter 32 Digital Mapping of Soil Attributes for Regional and Catchment Modelling, using Ancillary Covariates, Statistical and Geostatistical Techniques. Developments in Soil Science, 2006, 31, 437-622.	0.5	6
242	Spatial point-process statistics: concepts and application to the analysis of lead contamination in urban soil. Environmetrics, 2005, 16, 339-355.	0.6	9
243	Future Directions of Precision Agriculture. Precision Agriculture, 2005, 6, 7-23.	3.1	587
244	Comments on "Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer–TDR Moisture Probe―and "A Dynamic Cone Penetrometer for Measuring Soil Penetration Resistance― Soil Science Society of America Journal, 2005, 69, 925-926.	1.2	9
245	The Matérn function as a general model for soil variograms. Geoderma, 2005, 128, 192-207.	2.3	236
246	Rapid estimation of soil variability from the convex hull biplot area of topsoil ultra-violet, visible and near-infrared diffuse reflectance spectra. Geoderma, 2005, 128, 249-257.	2.3	26
247	Digital terron mapping. Geoderma, 2005, 128, 340-353.	2.3	34
248	Soil inference systems. Developments in Soil Science, 2004, 30, 323-348.	0.5	5
249	Integral energy as a measure of soil-water availability. Plant and Soil, 2003, 249, 253-262.	1.8	55
250	Elucidation of physiographic and hydrogeological features of the lower Namoi valley using fuzzy k-means classification of EM34 data. Environmental Modelling and Software, 2003, 18, 667-680.	1.9	37
251	On digital soil mapping. Geoderma, 2003, 117, 3-52.	2.3	2,543
252	Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Soil Research, 2003, 41, 1101.	0.6	295

#	Article	IF	CITATIONS
253	The <i>Neuroâ€m</i> Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society of America Journal, 2002, 66, 352-361.	1.2	47
254	Sampling strategy is important for producing weed maps: a case study using kriging. Weed Science, 2002, 50, 542-546.	0.8	33
255	The efficiency of various approaches to obtaining estimates of soil hydraulic properties. Geoderma, 2002, 107, 55-70.	2.3	48
256	From pedotransfer functions to soil inference systems. Geoderma, 2002, 109, 41-73.	2.3	310
257	The Method for Fitting Neural Network Parametric Pedotransfer Functions. Soil Science Society of America Journal, 2002, 66, 352.	1.2	104
258	Uncertainty analysis for pedotransfer functions. European Journal of Soil Science, 2002, 53, 417-429.	1.8	69
259	A Parametric Transfer Function for Grain-Flow Within a Conventional Combine Harvester. Precision Agriculture, 2002, 3, 123-134.	3.1	18
260	Title is missing!. Precision Agriculture, 2002, 3, 155-168.	3.1	56
261	A review of the contamination of soil with lead. Environment International, 2001, 27, 399-411.	4.8	195
262	Developments and trends in soil science: 100 volumes of Geoderma (1967–2001). Geoderma, 2001, 100, 217-268.	2.3	36
263	Estimating uncertainty in soil models (Pedometrics '99). Geoderma, 2001, 103, 1.	2.3	3
264	A rudimentary mechanistic model for soil formation and landscape development. Geoderma, 2001, 103, 161-179.	2.3	93
265	Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Soil Research, 2001, 39, 259.	0.6	76
266	The Australian soil texture boomerang: a comparison of the Australian and USDA/FAO soil particle-size classification systems. Soil Research, 2001, 39, 1443.	0.6	74
267	Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Soil Research, 2000, 38, 905.	0.6	59
268	Title is missing!. Precision Agriculture, 2000, 2, 389-398.	3.1	11
269	Using AVHRR images for spatial prediction of clay content in the lower Namoi Valley of eastern Australia. Geoderma, 2000, 97, 237-254.	2.3	99
270	An overview of pedometric techniques for use in soil survey. Geoderma, 2000, 97, 293-327.	2.3	474

#	Article	IF	CITATIONS
271	Estimation of sorptivity from disc-permeameter measurements. Geoderma, 2000, 95, 305-324.	2.3	39
272	On Diffusion in Fractal Soil Structures. Soil Science Society of America Journal, 2000, 64, 19-24.	1.2	32
273	A rudimentary mechanistic model for soil production and landscape development. Geoderma, 1999, 90, 3-21.	2.3	122
274	Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma, 1999, 93, 225-253.	2.3	313
275	Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling in Agroecosystems, 1998, 50, 51-62.	1.1	94
276	Applications of Fractals to Soil Studies. Advances in Agronomy, 1997, , 1-76.	2.4	49
277	Comments on "Fractal Dimensions of Soil Aggregateâ€6ize Distributions Calculated by Number and Mass― Soil Science Society of America Journal, 1993, 57, 1393-1393.	1.2	14
278	Fuzzy â€Means and Kriging for Mapping Soil as a Continuous System. Soil Science Society of America Journal, 1992, 56, 1848-1854.	1.2	50
279	STRUCTURA: A C program for estimating attributes of two-phase, heterogeneous structures digitized from planar specimens. Computers and Geosciences, 1991, 17, 335-350.	2.0	5