
Eva Castillejos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taking advantage of sulfur impurities present in commercial carbon nanofibers to generate selective palladium catalysts. Carbon, 2020, 157, 120-129.	10.3	5
2	Reductive degradation of 2,4-dichlorophenoxyacetic acid using Pd/carbon with bifunctional mechanism. Catalysis Today, 2020, 357, 361-367.	4.4	11
3	Comparative Study of Different Acidic Surface Structures in Solid Catalysts Applied for the Isobutene Dimerization Reaction. Nanomaterials, 2020, 10, 1235.	4.1	10
4	Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation. Catalysis Science and Technology, 2020, 10, 2503-2512.	4.1	20
5	Direct sulfation of a Zr-based metal-organic framework to attain strong acid catalysts. Microporous and Mesoporous Materials, 2019, 290, 109686.	4.4	24
6	Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts, 2019, 9, 230.	3.5	37
7	Difference in the deactivation of Au catalysts during ethanol transformation when supported on ZnO and on TiO ₂ . RSC Advances, 2018, 8, 7473-7485.	3.6	8
8	Promoter effect of alkalis on CuO/CeO 2 /carbon nanotubes systems for the PROx reaction. Catalysis Today, 2018, 301, 141-146.	4.4	17
9	When the nature of surface functionalities on modified carbon dominates the dispersion of palladium hydrogenation catalysts. Catalysis Today, 2018, 301, 248-257.	4.4	20
10	N-doped few-layered graphene-polyNi complex nanocomposite with excellent electrochromic properties. Carbon, 2017, 120, 32-43.	10.3	17
11	Synergy of Contact between ZnO Surface Planes and PdZn Nanostructures: Morphology and Chemical Property Effects in the Intermetallic Sites for Selective 1,3-Butadiene Hydrogenation. ACS Catalysis, 2017, 7, 796-811.	11.2	45
12	On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2. Microporous and Mesoporous Materials, 2017, 237, 282-293.	4.4	31
13	The promoter effect of potassium in CuO/CeO ₂ systems supported on carbon nanotubes and graphene for the CO-PROX reaction. Catalysis Science and Technology, 2016, 6, 6118-6127.	4.1	34
14	Efficient removal of paracetamol using LaCu1â^'xMxO3 (M = Mn, Ti) perovskites as heterogeneous Fenton-like catalysts. Chemical Engineering Journal, 2016, 304, 408-418.	12.7	69
15	Surface properties of amphiphilic carbon nanotubes and study of their applicability as basic catalysts. RSC Advances, 2016, 6, 54293-54298.	3.6	12
16	Selective 1,3-butadiene hydrogenation by gold nanoparticles on novel nano-carbon materials. Catalysis Today, 2015, 249, 117-126.	4.4	17
17	Improved performance of carbon nanofiber-supported palladium particles in the selective 1,3-butadiene hydrogenation: Influence of carbon nanostructure, support functionalization treatment and metal precursor. Catalysis Today, 2015, 249, 63-71.	4.4	26
18	Hydrocarbons adsorption on metal trimesate MOFs: Inverse gas chromatography and immersion calorimetry studies. Thermochimica Acta, 2015, 602, 36-42.	2.7	12

EVA CASTILLEJOS

#	Article	IF	CITATIONS
19	Detecting the Genesis of a High-Performance Carbon-Supported Pd Sulfide Nanophase and Its Evolution in the Hydrogenation of Butadiene. ACS Catalysis, 2015, 5, 5235-5241.	11.2	38
20	Selective 1,3-butadiene hydrogenation by gold nanoparticles deposited & precipitated onto nano-carbon materials. RSC Advances, 2015, 5, 81583-81598.	3.6	13
21	Enhanced ethylene polymerization of Ni(II) complexes supported on carbon nanotubes. Catalysis Today, 2014, 235, 33-40.	4.4	31
22	An immersion calorimetric study of the interactions between some organic molecules and functionalized carbon nanotube surfaces. Thermochimica Acta, 2013, 567, 107-111.	2.7	3
23	Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environmental Technology (United Kingdom), 2012, 33, 2353-2358.	2.2	37
24	Structural and surface modifications of carbon nanotubes when submitted to high temperature annealing treatments. Journal of Alloys and Compounds, 2012, 536, S460-S463.	5.5	21
25	Catalytic Removal of Water-Solved Aromatic Compounds by Carbon-Based Materials. , 2012, , 499-520.		2
26	An immersion calorimetry study of the interaction of organic compounds with carbon nanotube surfaces. Carbon, 2012, 50, 2731-2740.	10.3	19
27	Deposition of gold nanoparticles on ZnO and their catalytic activity for hydrogenation applications. Catalysis Communications, 2012, 22, 79-82.	3.3	22
28	High efficiency of the cylindrical mesopores of MWCNTs for the catalytic wet peroxide oxidation of C.I. Reactive Red 241 dissolved in water. Applied Catalysis B: Environmental, 2012, 121-122, 182-189.	20.2	20
29	Synthesis of Platinum–Ruthenium Nanoparticles under Supercritical CO ₂ and their Confinement in Carbon Nanotubes: Hydrogenation Applications. ChemCatChem, 2012, 4, 118-122.	3.7	41
30	Alkynylisocyanide Gold Mesogens as Precursors of Gold Nanoparticles. Inorganic Chemistry, 2011, 50, 8654-8662.	4.0	25
31	Catalytic activity of gold supported on ZnO tetrapods for the preferential oxidation of carbon monoxide under hydrogen rich conditions. Nanoscale, 2011, 3, 929-932.	5.6	22
32	Phenol adsorption from water solutions over microporous andÂmesoporous carbon surfaces: a real time kinetic study. Adsorption, 2011, 17, 483-488.	3.0	13
33	Selective Deposition of Gold Nanoparticles on or Inside Carbon Nanotubes and Their Catalytic Activity for Preferential Oxidation of CO. European Journal of Inorganic Chemistry, 2010, 2010, 5096-5102.	2.0	50
34	Catalysis in Carbon Nanotubes. ChemCatChem, 2010, 2, 41-47.	3.7	288
35	An Efficient Strategy to Drive Nanoparticles into Carbon Nanotubes and the Remarkable Effect of Confinement on Their Catalytic Performance. Angewandte Chemie - International Edition, 2009, 48, 2529-2533.	13.8	237
36	Comparative study of support effects in ruthenium catalysts applied for wet air oxidation of aromatic compounds. Catalysis Today, 2009, 143, 355-363.	4.4	25

Eva Castillejos

#	Article	IF	CITATIONS
37	On the interactions of phenol, aniline and p-nitrophenol on activated carbon surfaces as detected by TPD. Carbon, 2008, 46, 870-875.	10.3	29
38	Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. Journal of Chromatography A, 2008, 1188, 264-273.	3.7	76
39	Interactions between toluene and aniline and graphite surfaces. Carbon, 2006, 44, 3130-3133.	10.3	4
40	Effects of the surface chemistry of carbon materials on the adsorption of phenol–aniline mixtures from water. Carbon, 2004, 42, 653-665.	10.3	86
41	Specific Interactions between Aromatic Electrons of Organic Compounds and Graphite Surfaces As Detected by Immersion Calorimetry. Langmuir, 2004, 20, 1013-1015.	3.5	27
42	Adsorption of Aromatic Compounds from Water by Treated Carbon Materials. Environmental Science & Technology, 2004, 38, 5786-5796.	10.0	75