Emmanuel Coton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618389/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins, 2016, 8, 94.	1.5	392
2	Antifungal Microbial Agents for Food Biopreservation—A Review. Microorganisms, 2017, 5, 37.	1.6	217
3	Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 2017, 93, .	1.3	193
4	Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiology, 2010, 27, 1078-1085.	2.1	151
5	Filamentous Fungi and Mycotoxins in Cheese: A Review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 437-456.	5.9	142
6	Yeast ecology in French cider and black olive natural fermentations. International Journal of Food Microbiology, 2006, 108, 130-135.	2.1	137
7	Multiplex PCR for colony direct detection of Gram-positive histamine- and tyramine-producing bacteria. Journal of Microbiological Methods, 2005, 63, 296-304.	0.7	115
8	Biodiversity of Coagulase-Negative Staphylococci in French cheeses, dry fermented sausages, processing environments and clinical samples. International Journal of Food Microbiology, 2010, 137, 221-229.	2.1	114
9	Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiology, 2012, 29, 88-98.	2.1	100
10	The tyrosine decarboxylase operon ofLactobacillus brevisIOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiology Letters, 2003, 229, 65-71.	0.7	99
11	Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology, 2017, 241, 191-197.	2.1	98
12	Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology, 2016, 239, 79-85.	2.1	96
13	Brettanomyces bruxellensis population survey reveals a diploid-triploid complex structured according to substrate of isolation and geographical distribution. Scientific Reports, 2018, 8, 4136.	1.6	91
14	Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiology, 2004, 21, 125-130.	2.1	80
15	Low occurrence of safety hazards in coagulase negative staphylococci isolated from fermented foodstuffs. International Journal of Food Microbiology, 2010, 139, 87-95.	2.1	79
16	InÂvitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control, 2016, 60, 247-255.	2.8	79
17	Histidine carboxylase of Leuconostoc œnos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. Journal of Applied Microbiology, 1998, 84, 143-151.	1.4	77
18	Evidence of horizontal transfer as origin of strain to strain variation of the tyramine production trait in Lactobacillus brevis. Food Microbiology, 2009, 26, 52-57.	2.1	74

#	Article	IF	CITATIONS
19	Ecological and aromatic impact of two Gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese. International Journal of Food Microbiology, 2012, 153, 332-338.	2.1	67
20	Evidence of Distinct Populations and Specific Subpopulations within the Species <i>Oenococcus oeni</i> . Applied and Environmental Microbiology, 2010, 76, 7754-7764.	1.4	64
21	Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biology Reviews, 2017, 31, 12-32.	1.9	61
22	Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control, 2015, 47, 634-640.	2.8	59
23	Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its Diversification into Two Varieties. Current Biology, 2020, 30, 4441-4453.e4.	1.8	58
24	Induction of sexual reproduction and genetic diversity in the cheese fungus <i><scp>P</scp>enicillium roqueforti</i> . Evolutionary Applications, 2014, 7, 433-441.	1.5	57
25	Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines. Genome Biology and Evolution, 2015, 7, 1506-1518.	1.1	57
26	Antifungal Activity of Lactic Acid Bacteria Combinations in Dairy Mimicking Models and Their Potential as Bioprotective Cultures in Pilot Scale Applications. Frontiers in Microbiology, 2018, 9, 1787.	1.5	51
27	Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 2011, 28, 554-561.	2.1	50
28	Identification of Geotrichum candidum at the species and strain level: proposal for a standardized protocol. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 1019-1031.	1.4	47
29	Insights into Penicillium roqueforti Morphological and Genetic Diversity. PLoS ONE, 2015, 10, e0129849.	1.1	46
30	Independent domestication events in the blue heese fungus <i>Penicillium roqueforti</i> . Molecular Ecology, 2020, 29, 2639-2660.	2.0	45
31	Origin of the Putrescine-Producing Ability of the Coagulase-Negative Bacterium <i>Staphylococcus epidermidis</i> 2015B. Applied and Environmental Microbiology, 2010, 76, 5570-5576.	1.4	42
32	Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiology, 2019, 82, 160-170.	2.1	41
33	Histidine decarboxylase activity of Leuconostoc oenos 9204. Food Microbiology, 1995, 12, 455-461.	2.1	40
34	Impact of Gram-negative bacteria in interaction with a complex microbial consortium on biogenic amine content and sensory characteristics of an uncooked pressed cheese. Food Microbiology, 2012, 30, 74-82.	2.1	40
35	Cytotoxicity and immunotoxicity of cyclopiazonic acid on human cells. Toxicology in Vitro, 2014, 28, 940-947.	1.1	40
36	Functional diversity within the Penicillium roqueforti species. International Journal of Food Microbiology, 2017, 241, 141-150.	2.1	40

#	Article	IF	CITATIONS
37	Effect of temperature, pH, and water activity on Mucor spp. growth on synthetic medium, cheese analog and cheese. Food Microbiology, 2016, 56, 69-79.	2.1	37
38	Antifungal activity of fermented dairy ingredients: Identification of antifungal compounds. International Journal of Food Microbiology, 2020, 322, 108574.	2.1	36
39	Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products. Food Chemistry, 2019, 301, 125260.	4.2	35
40	Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiology, 2019, 81, 97-107.	2.1	35
41	Highlighting the Crude Oil Bioremediation Potential of Marine Fungi Isolated from the Port of Oran (Algeria). Diversity, 2020, 12, 196.	0.7	35
42	Hepatotoxicity of fusariotoxins, alone and in combination, towards the HepaRG human hepatocyte cell line. Food and Chemical Toxicology, 2017, 109, 439-451.	1.8	34
43	Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensis subsp. nov., isolated from French cider. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 121-125.	0.8	32
44	A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Applied Microbiology and Biotechnology, 2015, 99, 7601-7612.	1.7	32
45	Population dynamics of lactic acid bacteria during spontaneous malolactic fermentation in industrial cider. Food Research International, 2010, 43, 2101-2107.	2.9	31
46	In vitro co-culture models to evaluate acute cytotoxicity of individual and combined mycotoxin exposures on Caco-2, THP-1 and HepaRG human cell lines. Chemico-Biological Interactions, 2018, 281, 51-59.	1.7	31
47	Genotypic characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and sequencing of the fliC gene. Journal of Applied Microbiology, 2007, 104, 070915213557008-???.	1.4	30
48	Rapid identification of the three major species of dairy obligate heterofermenters <i>Lactobacillus brevis</i> , <i>Lactobacillus fermentum</i> and <i>Lactobacillus parabuchneri</i> by species-specific duplex PCR. FEMS Microbiology Letters, 2008, 284, 150-157.	0.7	30
49	Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiology, 2011, 28, 252-260.	2.1	30
50	Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. Fungal Biology Reviews, 2020, 34, 59-73.	1.9	30
51	Action mechanisms involved in the bioprotective effect of Lactobacillus harbinensis K.V9.3.1.Np against Yarrowia lipolytica in fermented milk. International Journal of Food Microbiology, 2017, 248, 47-55.	2.1	28
52	Tailor-made microbial consortium for Kombucha fermentation: Microbiota-induced biochemical changes and biofilm formation. Food Research International, 2021, 147, 110549.	2.9	28
53	Evidence of 4-ethylcatechol as one of the main phenolic off-flavour markers in French ciders. Food Chemistry, 2011, 125, 542-548.	4.2	27
54	Implications of Lactobacillus collinoides and Brettanomyces/Dekkera anomala in phenolic off-flavour defects of ciders. International Journal of Food Microbiology, 2012, 153, 159-165.	2.1	27

#	Article	IF	CITATIONS
55	Screening of representative cider yeasts and bacteria for volatile phenol-production ability. Food Microbiology, 2011, 28, 1243-1251.	2.1	26
56	Prevalent lactic acid bacteria in cider cellars and efficiency of Oenococcus oeni strains. Food Microbiology, 2012, 32, 32-37.	2.1	26
57	Microsatellite analysis of Saccharomyces uvarumdiversity. FEMS Yeast Research, 2016, 16, fow002.	1.1	26
58	Insights into the respiratory tract microbiota of patients with cystic fibrosis during early Pseudomonas aeruginosa colonization. SpringerPlus, 2015, 4, 405.	1.2	25
59	Diversity within Italian Cheesemaking Brine-Associated Bacterial Communities Evidenced by Massive Parallel 16S rRNA Gene Tag Sequencing. Frontiers in Microbiology, 2017, 8, 2119.	1.5	25
60	Beneficial Protective Role of Endogenous Lactic Acid Bacteria Against Mycotic Contamination of Honeybee Beebread. Probiotics and Antimicrobial Proteins, 2018, 10, 638-646.	1.9	25
61	Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiology, 2019, 82, 551-559.	2.1	25
62	1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti. Food Microbiology, 2016, 57, 1-7.	2.1	24
63	Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics, 2020, 21, 135.	1.2	23
64	Microbiological Origin of "Framboisé―in French Ciders. Journal of the Institute of Brewing, 2003, 109, 299-304.	0.8	22
65	Biogenic amine and antibiotic resistance profiles determined for lactic acid bacteria and a propionibacterium prior to use as antifungal bioprotective cultures. International Dairy Journal, 2018, 85, 21-26.	1.5	22
66	Penicillium roqueforti PR toxin gene cluster characterization. Applied Microbiology and Biotechnology, 2017, 101, 2043-2056.	1.7	21
67	Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Food Microbiology, 2017, 62, 239-250.	2.1	21
68	Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti. International Journal of Food Microbiology, 2015, 215, 187-193.	2.1	20
69	Technical note: High-throughput method for antifungal activity screening in a cheese-mimicking model. Journal of Dairy Science, 2018, 101, 4971-4976.	1.4	20
70	Production and migration of patulin in Penicillium expansum molded apples during cold and ambient storage. International Journal of Food Microbiology, 2020, 313, 108377.	2.1	20
71	Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. Journal of Applied Microbiology, 2010, 109, 166-179.	1.4	19
72	Important genetic diversity revealed by inter-LTR PCR fingerprinting of <i>Kluyveromyces marxianus</i> and <i>Debaryomyces hansenii</i> strains from French traditional cheeses. Dairy Science and Technology, 2009, 89, 569-581.	2.2	18

#	Article	IF	CITATIONS
73	Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J. Microbiology (United Kingdom), 2011, 157, 1841-1849.	0.7	18
74	Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microbiology, 2012, 31, 271-277.	2.1	17
75	Biodiversity and dynamics of the bacterial community of packaged king scallop (Pecten maximus) meat during cold storage. Food Microbiology, 2013, 35, 99-107.	2.1	17
76	Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. BMC Genomics, 2019, 20, 330.	1.2	16
77	Effects of disinfectants on inactivation of mold spores relevant to the food industry: a review. Fungal Biology Reviews, 2021, 38, 44-66.	1.9	16
78	Comparative analysis of five Mucor species transcriptomes. Genomics, 2019, 111, 1306-1314.	1.3	14
79	Individual and combined toxicological effects of deoxynivalenol and zearalenone on human hepatocytes in in vitro chronic exposure conditions. Toxicology Letters, 2017, 280, 238-246.	0.4	13
80	Zymomonas mobilis subspecies identification by amplified ribosomal DNA restriction analysis. Letters in Applied Microbiology, 2005, 40, 152-157.	1.0	12
81	Individual and combined effects of roquefortine C and mycophenolic acid on human monocytic and intestinal cells. World Mycotoxin Journal, 2016, 9, 51-62.	0.8	12
82	Effects of fusariotoxin co-exposure on THP-1 human immune cells. Cell Biology and Toxicology, 2018, 34, 191-205.	2.4	12
83	Effect of Penicillium roqueforti mycotoxins on Caco-2 cells: Acute and chronic exposure. Toxicology in Vitro, 2018, 48, 188-194.	1.1	11
84	Differential impacts of individual and combined exposures of deoxynivalenol and zearalenone on the HepaRG human hepatic cell proteome. Journal of Proteomics, 2018, 173, 89-98.	1.2	10
85	of Saccharomycopsis olivae f. a., sp. nov. and Saccharomycopsis guyanensis f. a., sp. nov. Reassignment of Candida amapae to Saccharomycopsis amapae f. a., comb. nov., Candida lassenensis to Saccharomycopsis lassenensis f. a., comb. nov. and Arthroascus babjevae to Saccharomycopsis babievas f. a., comb. nov. and Arthroascus babjevae to Saccharomycopsis	0.8	9
86	2169-2175. Proteomic analysis of the adaptative response of Mucor spp. to cheese environment. Journal of Proteomics, 2017, 154, 30-39.	1.2	9
87	Dataset of differentially accumulated proteins in Mucor strains representative of four species grown on synthetic potato dextrose agar medium and a cheese mimicking medium. Data in Brief, 2017, 11, 214-220.	0.5	8
88	Effect of PR toxin on THP1 and Caco-2 cells: an in vitro study. World Mycotoxin Journal, 2017, 10, 375-386.	0.8	8
89	Bacterial diversity of traditional fermented milks from Cameroon and safety and antifungal activity assessment for selected lactic acid bacteria. LWT - Food Science and Technology, 2021, 138, 110635.	2.5	8
90	Microbial Ecology of French Dry Fermented Sausages and Mycotoxin Risk Evaluation During Storage. Frontiers in Microbiology, 2021, 12, 737140.	1.5	7

#	Article	IF	CITATIONS
91	Impact of the physiological state of fungal spores on their inactivation by active chlorine and hydrogen peroxide. Food Microbiology, 2021, 100, 103850.	2.1	6
92	Citeromyces nyonsensis sp. nov., a novel yeast species isolated from black olive brine. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3086-3090.	0.8	5
93	Impact of intraspecific variability and physiological state on Penicillium commune inactivation by 70% ethanol. International Journal of Food Microbiology, 2020, 332, 108782.	2.1	5
94	Effect of abiotic factors and culture media on the growth of cheese-associated Nectriaceae species. International Journal of Food Microbiology, 2022, 364, 109509.	2.1	5
95	Duplex PCR Method for Rapid Detection of <i>Zymomonas mobilis</i> in Cider. Journal of the Institute of Brewing, 2005, 111, 299-303.	0.8	4
96	Impact of temperature application and concentration of commercial sanitizers on inactivation of food-plant fungal spores. International Journal of Food Microbiology, 2022, 366, 109560.	2.1	2