List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7618366/publications.pdf Version: 2024-02-01

WEN-FA XIE

#	Article	IF	CITATIONS
1	Flexible organic optoelectronic devices on paper. IScience, 2022, 25, 103782.	1.9	21
2	Rational Design of Ir(III) Phosphors to Strategically Manage Charge Recombination for High-Performance White Organic Light-Emitting Diodes. Inorganic Chemistry, 2022, 61, 3736-3745.	1.9	8
3	Modulation of recombination zone position for white perovskite/organic emitter hybrid light-emitting devices. Applied Physics Letters, 2022, 120, .	1.5	1
4	A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper. Light: Science and Applications, 2022, 11, 59.	7.7	31
5	Air-Stable Ultrabright Inverted Organic Light-Emitting Devices with Metal Ion-Chelated Polymer Injection Layer. Nano-Micro Letters, 2022, 14, 14.	14.4	24
6	Color-tunable organic light-emitting diodes with ultrathin thermal activation delayed fluorescence emitting layer. Applied Physics Letters, 2022, 120, 171102.	1.5	5
7	Centimeter-scale hole diffusion and its application in organic light-emitting diodes. Science Advances, 2022, 8, eabm1999.	4.7	10
8	Carrier transport regulation with hole transport trilayer for efficiency enhancement in quantum dot light-emitting devices. Journal of Luminescence, 2021, 231, 117785.	1.5	8
9	Highly efficient and stable quantum dot light-emitting devices with a low-temperature tin oxide electron transport layer. Journal of Materials Chemistry C, 2021, 9, 13748-13754.	2.7	10
10	High performance doping-free WOLEDs based on rationally designed asymmetric orange-red Ir(III) emitter with balanced charge mobility. Organic Electronics, 2021, 89, 106022.	1.4	2
11	Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light: Science and Applications, 2021, 10, 116.	7.7	55
12	Simple-structure color-tunable fluorescent organic light-emitting devices with chromaticity difference beyond five-step McAdam ellipses. Journal Physics D: Applied Physics, 2021, 54, 505103.	1.3	6
13	Improved color quality in double-EML WOLEDs by using a tetradentate Pt(<scp>ii</scp>) complex as a green/red emitter. Journal of Materials Chemistry C, 2021, 9, 3384-3390.	2.7	16
14	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
15	Engineering of aggregation-induced emission luminogens by isomeric strategy to achieve high-performance optoelectronic device. Dyes and Pigments, 2020, 173, 107912.	2.0	22
16	Manipulating charge carrier transporting of disubstituted phenylbenzoimidazole-based host materials for efficient full-color PhOLEDs. Organic Electronics, 2020, 77, 105513.	1.4	3
17	High-performance flexible organic thin-film transistor nonvolatile memory based on molecular floating-gate and <i>pn</i> -heterojunction channel layer. Applied Physics Letters, 2020, 116, .	1.5	17
18	Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on <scp>d</scp> -Sorbitol Hexaacetate-Modified MAPbI ₃ . ACS Applied Materials & Interfaces, 2020, 12, 47677-47683.	4.0	7

#	Article	IF	CITATIONS
19	Efficient All-Blade-Coated Quantum Dot Light-Emitting Diodes through Solvent Engineering. Journal of Physical Chemistry Letters, 2020, 11, 9019-9025.	2.1	10
20	High-Performance and Stable Warm White OLEDs Based on Orange Iridium(III) Phosphors Modified with Simple Alkyl Groups. Organometallics, 2020, 39, 3384-3393.	1.1	8
21	Efficiency enhancement in an inverted organic light-emitting device with a TiO ₂ electron injection layer through interfacial engineering. Journal of Materials Chemistry C, 2020, 8, 8206-8212.	2.7	5
22	A deep blue fluorescent emitter functioning as host material in highly efficient phosphorescent and hybrid white organic light-emitting devices. Organic Electronics, 2020, 85, 105848.	1.4	17
23	Solution-processed organometallic quasi-two-dimensional nanosheets as a hole buffer layer for organic light-emitting devices. Nanoscale, 2020, 12, 6983-6990.	2.8	14
24	Stable and efficient phosphorescent organic light-emitting device utilizing a δ-carboline-containing host displaying thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 3800-3806.	2.7	10
25	Silver–Bismuth Bilayer Anode for Perovskite Nanocrystal Light-Emitting Devices. Journal of Physical Chemistry Letters, 2020, 11, 3853-3859.	2.1	12
26	Manipulating phosphorescence efficiencies of orange iridium(III) complexes through ancillary ligand control. Dyes and Pigments, 2019, 160, 119-127.	2.0	9
27	Color-Tunable, Spectra-Stable Flexible White Top-Emitting Organic Light-Emitting Devices Based on Alternating Current Driven and Dual-Microcavity Technology. ACS Photonics, 2019, 6, 2350-2357.	3.2	23
28	Carrier transport manipulation for efficiency enhancement in blue phosphorescent organic light-emitting devices with a 4,4′-bis(<i>N</i> -carbazolyl)-2,2′-biphenyl host. Journal of Materials Chemistry C, 2019, 7, 9301-9307.	2.7	8
29	Organic Fieldâ€Effect Transistor Nonvolatile Memories with Hydroxylâ€Rich Polymer Materials as Functional Gate Dielectrics. Advanced Electronic Materials, 2019, 5, 1900569.	2.6	13
30	An efficient and stable hybrid organic light-emitting device based on an inorganic metal oxide hole transport layer and an electron transport layer. Journal of Materials Chemistry C, 2019, 7, 1991-1998.	2.7	13
31	Efficient ITO-free organic light-emitting devices with dual-functional PSS-rich PEDOT:PSS electrode by enhancing carrier balance. Journal of Materials Chemistry C, 2019, 7, 5426-5432.	2.7	62
32	Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Materials Chemistry Frontiers, 2019, 3, 970-1031.	3.2	67
33	Bluishâ€Green Thermally Activated Delayed Fluorescence Material for Blueâ€Hazard Free Hybrid White Organic Lightâ€Emitting Device with High Color Quality and Low Efficiency Rollâ€Off. Advanced Optical Materials, 2019, 7, 1801718.	3.6	30
34	Gate-controlled multi-bit nonvolatile ferroelectric organic transistor memory on paper substrates. Journal of Materials Chemistry C, 2019, 7, 13477-13485.	2.7	29
35	Low color temperature, high color rendering index candlelight style white organic light-emitting devices with a fac-tris (mesityl-2-phenyl-1H-imidazole) iridium (III) blue emitting layer. Materials Research Express, 2019, 6, 016205.	0.8	0
36	Efficiency enhancement in quantum dot light-emitting devices employing trapping-type electron buffer layer. Organic Electronics, 2019, 66, 211-215.	1.4	3

#	Article	IF	CITATIONS
37	High-Efficiency Blue Phosphorescent Organic Light-Emitting Devices with Low Efficiency Roll-Off at Ultrahigh Luminance by the Reduction of Triplet-Polaron Quenching. ACS Applied Materials & Interfaces, 2019, 11, 6292-6301.	4.0	19
38	Low-voltage programmable/erasable high performance flexible organic transistor nonvolatile memory based on a tetratetracontane passivated ferroelectric terpolymer. Organic Electronics, 2019, 64, 62-70.	1.4	21
39	Inâ€Planarâ€Electrodes Organic Lightâ€Emitting Devices for Smart Lighting Applications. Advanced Optical Materials, 2019, 7, 1800857.	3.6	17
40	Facilitating electron collection of organic photovoltaics by passivating trap states and tailoring work function. Solar Energy, 2019, 181, 9-16.	2.9	6
41	High Mobility Flexible Ferroelectric Organic Transistor Nonvolatile Memory With an Ultrathin \${ext {AlO}}_{{X}}\$ Interfacial Layer. IEEE Transactions on Electron Devices, 2018, 65, 1113-1118.	1.6	21
42	Efficient and angle-stable white top-emitting organic light emitting devices with patterned quantum dots down-conversion films. Organic Electronics, 2018, 56, 46-50.	1.4	18
43	Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit. Applied Physics Express, 2018, 11, 022101.	1.1	7
44	Coffee-Ring-Free Ultrasonic Spray Coating Single-Emission Layers for White Organic Light-Emitting Devices and Their Energy-Transfer Mechanism. ACS Applied Energy Materials, 2018, 1, 103-112.	2.5	17
45	Hybrid organic light-emitting device based on ultrasonic spray-coating molybdenum trioxide transport layer with low turn-on voltage, improved efficiency & stability. Organic Electronics, 2018, 52, 264-271.	1.4	10
46	Organic transistor nonvolatile memory with an integrated molecular floating-gate/tunneling layer. Applied Physics Letters, 2018, 113, .	1.5	12
47	Efficient Trilayer Phosphorescent Organic Light-Emitting Devices Without Electrode Modification Layer and Its Working Mechanism. Nanoscale Research Letters, 2018, 13, 310.	3.1	4
48	Molecular Engineering of Phenylbenzimidazole-Based Orange Ir(III) Phosphors toward High-Performance White OLEDs. Inorganic Chemistry, 2018, 57, 6029-6037.	1.9	12
49	Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Organic Electronics, 2018, 62, 407-411.	1.4	13
50	Highly efficient white organic light-emitting devices with optimized electron transporting layers. Chemical Research in Chinese Universities, 2017, 33, 227-230.	1.3	2
51	Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2017, 4, 1271-1278.	3.2	84
52	Two-dimensional-growth small molecular hole-transporting layer by ultrasonic spray coating for organic light-emitting devices. Organic Electronics, 2017, 47, 181-188.	1.4	9
53	Ambipolar D–A type bifunctional materials with hybridized local and charge-transfer excited state for high performance electroluminescence with EQE of 7.20% and CIEy â^¼ 0.06. Journal of Materials Chemistry C, 2017, 5, 5402-5410.	2.7	107
54	Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Applied Physics Letters, 2017, 111, .	1.5	30

#	Article	IF	CITATIONS
55	Efficiently alternating current driven tandem organic light-emitting devices with (Ag/4,7-diphenyl-1,10-phenanthroline)n interconnecting layers. Applied Physics Letters, 2017, 111, .	1.5	8
56	Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Scientific Reports, 2017, 7, 8890.	1.6	43
57	Efficient multilayer and single layer phosphorescent organic light-emitting devices using a host with balanced bipolar transporting properties and appropriate energy level. Organic Electronics, 2017, 50, 106-114.	1.4	11
58	Achieving High Performances of Nondoped OLEDs Using Carbazole and Diphenylphosphoryl-Functionalized Ir(III) Complexes as Active Components. Inorganic Chemistry, 2017, 56, 9979-9987.	1.9	30
59	Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices. Scientific Reports, 2016, 6, 37042.	1.6	30
60	Simple molecular structure design of iridium(III) complexes: Achieving highly efficient non-doped devices with low efficiency roll-off. Organic Electronics, 2016, 35, 142-150.	1.4	20
61	High Mobility n-Channel Organic Field-Effect Transistor Based a Tetratetracontane Interfacial Layer on Gate Dielectrics. IEEE Electron Device Letters, 2016, 37, 1632-1635.	2.2	9
62	4, 6-Bis[3-(dibenzothiophen-2-yl)phenyl] pyrimidine bipolar host for bright, efficient and low efficiency roll-off phosphorescent organic light-emitting devices. Organic Electronics, 2016, 38, 301-306.	1.4	4
63	Ir(III) Phosphors Modified with Fluorine Atoms in Pyridine-1,2,4-triazolyl Ligands for Efficient OLEDs Possessing Low-Efficiency Roll-off. Organometallics, 2016, 35, 3870-3877.	1.1	23
64	Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer. Scientific Reports, 2016, 6, 36291.	1.6	27
65	Low efficiency roll-off and high performance OLEDs employing alkyl group modified iridium(<scp>iii</scp>) complexes as emitters. RSC Advances, 2016, 6, 111556-111563.	1.7	7
66	Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-independent emission. Scientific Reports, 2016, 6, 22530.	1.6	46
67	Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors. Chinese Physics Letters, 2015, 32, 098501.	1.3	Ο
68	Multilevel memory characteristics by light-assisted programming in floating-gate organic thin-film transistor nonvolatile memory. Current Applied Physics, 2015, 15, 770-775.	1.1	19
69	Angle-stable inverted top-emitting white organic light-emitting devices based on gradient-doping electron injection interlayer. Organic Electronics, 2015, 25, 335-339.	1.4	9
70	The role of phosphor nanoparticles in high efficiency organic solar cells. Synthetic Metals, 2015, 204, 65-69.	2.1	9
71	Efficient piezochromic luminescence from tetraphenylethene functionalized pyridine-azole derivatives exhibiting aggregation-induced emission. Dyes and Pigments, 2015, 119, 62-69.	2.0	23
72	Efficient and low-voltage phosphorescent organic light-emitting devices based on blue iridium complex host. Chemical Research in Chinese Universities, 2015, 31, 569-572.	1.3	4

#	Article	IF	CITATIONS
73	Manipulating efficiencies through modification of N-heterocyclic phenyltriazole ligands for blue iridium(III) complexes. Dyes and Pigments, 2015, 113, 655-663.	2.0	11
74	Modification of iridium(III) complexes for fabrication of high-performance non-doped organic light-emitting diode. Dyes and Pigments, 2015, 112, 8-16.	2.0	32
75	High Mobility Pentacene/C60-Based Ambipolar OTFTs by Thickness Optimization of Bottom Pentacene Layer. IEEE Transactions on Electron Devices, 2014, 61, 3845-3851.	1.6	6
76	MoO ₃ Modification Layer to Enhance Performance of Pentacene-OTFTs With Various Low-Cost Metals as Source/Drain Electrodes. IEEE Transactions on Electron Devices, 2014, 61, 3507-3512.	1.6	21
77	Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory. Applied Physics Letters, 2014, 104, 013302.	1.5	29
78	Efficient inverted organic light-emitting devices with self or intentionally Ag-doped interlayer modified cathode. Applied Physics Letters, 2014, 104, 093305.	1.5	9
79	Effect of tunneling layers on the performances of floating-gate based organic thin-film transistor nonvolatile memories. Applied Physics Letters, 2014, 105, 123303.	1.5	15
80	Photobiologically Safe High Color Rendering Index White Organic Light-Emitting Devices. IEEE Photonics Technology Letters, 2014, 26, 1691-1694.	1.3	9
81	Efficient greenish-blue phosphorescent iridium(III) complexes containing carbene and triazole chromophores for organic light-emitting diodes. Journal of Organometallic Chemistry, 2014, 753, 55-62.	0.8	20
82	Silver/germanium/silver: an effective transparent electrode for flexible organic light-emitting devices. Journal of Materials Chemistry C, 2014, 2, 835-840.	2.7	32
83	Iridium(iii) complexes adopting 1,2-diphenyl-1H-benzoimidazole ligands for highly efficient organic light-emitting diodes with low efficiency roll-off and non-doped feature. Journal of Materials Chemistry C, 2014, 2, 2150.	2.7	78
84	Effect of the greenish-yellow emission on the color rendering index of white organic light-emitting devices. Organic Electronics, 2014, 15, 2817-2821.	1.4	23
85	Low-voltage p-channel, n-channel and ambipolar organic thin-film transistors based on an ultrathin inorganic/polymer hybrid gate dielectric layer. Organic Electronics, 2014, 15, 2568-2574.	1.4	10
86	Efficient fluorescent white organic light-emitting devices with a reduced efficiency roll-off based on a blue ambipolar fluorescent emitter. Current Applied Physics, 2014, 14, 680-684.	1.1	4
87	Angle-stable top-emitting white organic light-emitting devices employing a down-conversion layer. Current Applied Physics, 2014, 14, 1451-1454.	1.1	4
88	Tandem white organic light-emitting device using non-modified Ag layer as cathode and interconnecting layer. Organic Electronics, 2014, 15, 675-679.	1.4	21
89	Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Solar Energy Materials and Solar Cells, 2014, 124, 126-132.	3.0	29
90	Effect of gold nanoparticles on the performances of the phosphorescent organic light-emitting devices. Current Applied Physics, 2014, 14, 53-56.	1.1	12

#	Article	IF	CITATIONS
91	Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices. Scientific Reports, 2014, 4, 6754.	1.6	40
92	Influence of Thickness on Performance of Blue Single-Layer Organic Light-Emitting Device. IEEE Photonics Technology Letters, 2013, 25, 2205-2208.	1.3	9
93	Ultra-high general and special color rendering index white organic light-emitting device based on a deep red phosphorescent dye. Organic Electronics, 2013, 14, 3201-3205.	1.4	28
94	An orange iridium(iii) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 7371.	2.7	52
95	The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers. Applied Physics Letters, 2013, 102, .	1.5	26
96	High general and special color rendering index white organic light-emitting device with bipolar homojunction emitting layers. Organic Electronics, 2013, 14, 1946-1951.	1.4	13
97	Angle-stable RGBW top-emitting organic light-emitting devices with Ag/Ge/Ag cathode. Optics Letters, 2013, 38, 1742.	1.7	9
98	Performance improvement of inverted polymer solar cells by doping Au nanoparticles into TiO2 cathode buffer layer. Applied Physics Letters, 2013, 103, .	1.5	23
99	Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime. Optics Letters, 2012, 37, 2019.	1.7	21
100	High-efficiency and low-efficiency-roll-off single-layer white organic light-emitting devices with a bipolar transport host. Applied Physics Letters, 2012, 101, 063306.	1,5	30
101	An efficient flexible white organic light-emitting device with a screen-printed conducting polymer anode. Journal Physics D: Applied Physics, 2012, 45, 402002.	1.3	12
102	High-efficiency blue and white organic light-emitting devices by combining fluorescent and phosphorescent blue emitters. Organic Electronics, 2012, 13, 2412-2416.	1.4	11
103	Efficient Hybrid White Organic Light-Emitting Devices with a Reduced Efficiency Roll-off Based on a Blue Fluorescent Emitter of Which Charge Carriers Are Ambipolar and Electric-Field Independent. Journal of Physical Chemistry C, 2011, 115, 2428-2432.	1.5	18
104	Semitransparent white organic light-emitting devices with symmetrical electrode structure. Organic Electronics, 2011, 12, 2192-2197.	1.4	18
105	High efficiency top-emitting white organic light-emitting devices with a (metal/organic)2 cathode. Current Applied Physics, 2011, 11, 1410-1413.	1.1	7
106	Blue top-emitting organic light-emitting devices using Alq3 as phase shift adjustment layer. Optoelectronics Letters, 2011, 7, 126-128.	0.4	1
107	Efficient multilayer electrophosphorescence white polymer light-emitting diodes with aluminum cathodes. Organic Electronics, 2011, 12, 154-160.	1.4	16
108	Optical simulation and optimization of ITO-free top-emitting white organic light-emitting devices for lighting or display. Organic Electronics, 2011, 12, 923-935.	1.4	9

#	Article	IF	CITATIONS
109	High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode. Organic Electronics, 2011, 12, 1137-1141.	1.4	51
110	Efficient white organic light-emitting diodes based on an orange iridium phosphorescent complex. Journal of Luminescence, 2011, 131, 2144-2147.	1.5	17
111	High-contrast and high-efficiency microcavity top-emitting white organic light-emitting devices. Organic Electronics, 2010, 11, 202-206.	1.4	32
112	Highly efficient and low-cost top-emitting organic light-emitting diodes for monochromatic microdisplays. Organic Electronics, 2010, 11, 407-411.	1.4	19
113	High-Efficiency Nondoped Blue Organic Light-Emitting Devices with Reduced Efficiency Roll-Off. Journal of Physical Chemistry C, 2010, 114, 4186-4189.	1.5	9
114	Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal Physics D: Applied Physics, 2009, 42, 055115.	1.3	5
115	Transparent white organic light-emitting devices with a LiF/Yb:Ag cathode. Optics Letters, 2009, 34, 1174.	1.7	12
116	Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode. Optics Letters, 2009, 34, 2703.	1.7	23
117	Highly efficient blue top-emitting device with phase-shift adjustment layer. Optics Express, 2009, 17, 5364.	1.7	14
118	Influence of interlayer on the performance of stacked white organic light-emitting devices. Applied Physics Letters, 2009, 95, .	1.5	26
119	Effective hole-injection layer for non-doped inverted top-emitting organic light-emitting devices. Microelectronics Journal, 2008, 39, 723-726.	1.1	7
120	Improved performances in a top-emitting green organic light-emitting device with light magnification. Thin Solid Films, 2008, 516, 3364-3367.	0.8	6
121	Improvement of viewing angle and pixel contrast ratio in green top-emitting organic light-emitting devices. Optics Express, 2008, 16, 8868.	1.7	6
122	Top-emitting white organic light-emitting devices with down-conversion phosphors: Theory and experiment. Optics Express, 2008, 16, 15489.	1.7	42
123	Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units. Applied Physics Letters, 2008, 93, 153508.	1.5	49
124	Effect of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline outcoupling layer on electroluminescent performances in top-emitting organic light-emitting devices. Journal of Applied Physics, 2008, 103, 054506.	1.1	15
125	Highly efficient and high colour rendering index white organic light-emitting devices using bis(2-(2-fluorphenyl)- 1,3-benzothiozolato-N,C2′) iridium (acetylacetonate) as yellow emitter. Semiconductor Science and Technology, 2007, 22, 798-801.	1.0	7
126	Top-emitting organic light-emitting devices with different-thickness top silver cathodes. Journal Physics D: Applied Physics, 2007, 40, 5888-5891.	1.3	4

#	Article	IF	CITATIONS
127	White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers. Applied Physics Letters, 2007, 91, 023505.	1.5	74
128	High efficiency electrophosphorescent red organic light-emitting devices with double-emission layers. Solid-State Electronics, 2007, 51, 1129-1132.	0.8	16
129	Transparent organic light-emitting devices with LiF/Yb:Ag cathode. Thin Solid Films, 2007, 515, 6975-6977.	0.8	14
130	Synthesis, characterization, photoluminescence and electroluminescence properties of new 1,3,4-oxadiazole-containing rhenium(I) complex Re(CO)3(Bphen)(PTOP). Chinese Chemical Letters, 2007, 18, 1501-1504.	4.8	15
131	Enhanced current efficiency in organic light-emitting devices using 4,4′-N,N′-dicarbazole-biphenyl as hole-buffer layer. Solid-State Electronics, 2007, 51, 111-114.	0.8	7
132	Optical properties of a periodic one-dimensional metallic-organic photonic crystal. Journal Physics D: Applied Physics, 2006, 39, 2373-2376.	1.3	15
133	Contrast and efficiency enhancement in organic light-emitting devices utilizing high absorption and high charge mobility organic layers. Optics Express, 2006, 14, 7954.	1.7	18
134	White organic light-emitting devices with Sm:Ag black cathode. Optics Express, 2006, 14, 10819.	1.7	10
135	High efficiency small molecule white organic light-emitting devices with a multilayer structure. Solid State Communications, 2006, 139, 468-472.	0.9	6
136	High-contrast and high-efficiency top-emitting organic light-emitting devices. Applied Physics A: Materials Science and Processing, 2006, 85, 95-97.	1.1	18
137	Nondoped-type red organic electroluminescent devices based on a 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran ultrathin layer. Semiconductor Science and Technology, 2006, 21, 316-319.	1.0	7
138	A green top-emitting organic light-emitting device with improved luminance and efficiency. Journal Physics D: Applied Physics, 2006, 39, 3738-3741.	1.3	6
139	High-performance non-doped-type white organic light-emitting devices based on dual ultrathin layers. Semiconductor Science and Technology, 2006, 21, 1447-1451.	1.0	11
140	High-efficiency white organic light-emitting devices using a blue iridium complex to sensitize a red fluorescent dye. Journal of Applied Physics, 2006, 100, 096114.	1.1	12
141	Contrast improvement of organic light-emitting devices with Sm:Ag cathode. Applied Physics Letters, 2006, 88, 083507.	1.5	28
142	Improved light outcoupling for top-emitting organic light-emitting devices. Applied Physics Letters, 2006, 89, 043505.	1.5	20
143	Optical constants of 2,3-bis-(N,N-1-naphthylphenylamino) -N-methylmaleimide thin film by spectroscopic ellipsometry. EPJ Applied Physics, 2005, 31, 179-183.	0.3	0
144	High-efficiency Simple Structure White Organic Light-emitting Devices Based on Rubrene Ultrathin Layer. Optical and Quantum Electronics, 2005, 37, 943-948.	1.5	2

#	Article	IF	CITATIONS
145	High colour rendering index non-doped-type white organic light-emitting devices with a RGB-stacked multilayer structure. Semiconductor Science and Technology, 2005, 20, L57-L60.	1.0	11
146	The UV-induced positive and negative refractive index changes in GeO2-SiO2films. EPJ Applied Physics, 2005, 32, 105-108.	0.3	0
147	High-Efficient Non-Doped Type White Organic Light-Emitting Devices Using an Electron/Exciton Blocker. Materials Science Forum, 2005, 475-479, 1799-1804.	0.3	0
148	High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer. Semiconductor Science and Technology, 2005, 20, 326-329.	1.0	21
149	Low-voltage top-emitting organic light-emitting devices with an organic double-heterojunction structure. Semiconductor Science and Technology, 2005, 20, 443-445.	1.0	9
150	UV-Irradiation-Induced Refractive Index Increase of Ge-Doped Silica Films. Materials Science Forum, 2005, 475-479, 1837-1840.	0.3	0
151	Modification of the electrodes of organic light-emitting devices using the SnO2ultrathin layer. Semiconductor Science and Technology, 2004, 19, 380-383.	1.0	10
152	Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration. Chinese Physics Letters, 2004, 21, 556-558.	1.3	8
153	Efficient White Light Emitting Using an Electron Blocker in Non-Doped Type Organic Electroluminescent Devices. Optical and Quantum Electronics, 2004, 36, 635-640.	1.5	5
154	High-Efficiency White Light Emission Using a Phosphorescent Sensitizer in Organic Light-Emitting Devices. Optical and Quantum Electronics, 2004, 36, 659-664.	1.5	3
155	Effect of a thin layer of tris (8-hydroxyquinoline) aluminum doped with 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) on the chromaticity of white organic light-emitting devices. Thin Solid Films, 2004, 467, 231-233.	0.8	5
156	Characterization of Ge-doped silica films with low optical loss grown by flame hydrolysis deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 107, 317-320.	1.7	3
157	Thermal annealing in FHD Ge-doped SiO2 film for applications in optical waveguides. Applied Surface Science, 2004, 228, 48-52.	3.1	4
158	Optical and surface properties of SiO2 by flame hydrolysis deposition for silica waveguide. Optical Materials, 2003, 22, 283-287.	1.7	12
159	Blue and white organic light-emitting diodes based on 4,4Â-bis(2,2Â diphenyl vinyl)-1,1Â-biphenyl. Semiconductor Science and Technology, 2003, 18, L42-L44.	1.0	21
160	Non-doped-type white organic light-emitting devices based on yellow-emitting ultrathin 5,6,11,12-tetraphenylnaphthacene and blue-emitting 4,4Â-bis(2,2Â-diphenyl vinyl)-1,1Â-biphenyl. Journal Physics D: Applied Physics, 2003, 36, 2331-2334.	1.3	49
161	Spectroscopic Ellipsometry Studies of CuPc and Other Materials for Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2003, 42, 1466-1469.	0.8	30
162	Improved efficiency of organic light-emitting devices employing bathocuproine doped in the electron-transporting layer. Semiconductor Science and Technology, 2003, 18, L49-L52.	1.0	17

#	Article	IF	CITATIONS
163	A nondoped-type small molecule white organic light-emitting device. Journal Physics D: Applied Physics, 2003, 36, 1246-1248.	1.3	39
164	Photoinduced Changes in Ge-Doped Flame Hydrolysis Silica Glass Films. Japanese Journal of Applied Physics, 2003, 42, 7461-7463.	0.8	2
165	Thermal Annealing of SiO 2 Fabricated by Flame Hydrolysis Deposition. Chinese Physics Letters, 2003, 20, 1366-1368.	1.3	8
166	High-Efficiency Organic Double-Quantum-Well Light-Emitting Devices Using 5,6,11,12-Tetraphenylnaphthacene Sub-monolayer as Potential Well. Chinese Physics Letters, 2003, 20, 956-958.	1.3	8
167	Structural Design of a Passive Matrix (PM) Color Organic Light-Emitting Device. Japanese Journal of Applied Physics, 2003, 42, 2545-2548.	0.8	2
168	Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices. Applied Physics Letters, 2002, 81, 2935-2937.	1.5	66